研究生: |
楊庭諺 Yang, Ting-Yen |
---|---|
論文名稱: |
物聯網應用於山坡影像與水位監測系統之架構開發 Development of an IoT Architecture for Slope Image and Water Level Monitoring Systems |
指導教授: |
吳順德
Wu, Shuen-De |
口試委員: |
吳順德
Wu, Shuen-De 王逸民 Wang, Yet-Men 呂有勝 Lu, Yu-Sheng |
口試日期: | 2024/11/25 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 物聯網 、感測器 、ESP32 、樹莓派 、Line Notify |
英文關鍵詞: | Internet of Things, sensor, ESP32, Raspberry Pi, Line Notify |
研究方法: | 行動研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202401992 |
論文種類: | 學術論文 |
相關次數: | 點閱:8 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧物聯網監測系統在當今日益數字化的環境中扮演著至關重要的角色。本研究旨在開發一種穩定的智慧物聯網監測系統架構,以應對不斷變化的監測需求,提高監測效率和自動化能力。本研究的目標是建立一個高度彈性、可擴展且安全可靠的系統,能夠整合先進的感測技術和數據處理算法,實現對山坡影像與水位監測資料的高效收集、儲存和分析。為了達到這一目標,本研究使用樹莓派作為伺服器,實現伺服器的輕量化,同時感測器端,研究ESP32減少電量消耗,,並且在系統繁忙時以Line Notify即時通報管理者,減少管理者平時用於監測系統消耗的時間成本。
本研究的研究方法根據不同案例需求分析選擇出的適合系統架構。在架構設計的基礎上,本研究將選擇和改善適用於不同場景的感測技術和數據處理算法,以實現系統的高效運作。同時,本研究還將實施完善的安全機制,確保系統的數據安全性和隱私性,並設計便利的應用,視覺化呈現資料給使用者。
預期的成果包括實作一種智慧物聯網監測系統架構,具有高度彈性、可擴展性和自動化能力,並實際應用於山坡影像與水位監測。這一研究期望能實現為智慧監測系統的發展和應用提供重要的技術支持,促進物聯網技術在各個領域的更廣泛應用和深度融合。
The Smart IoT Monitoring System plays a critical role in today's increasingly digitized environment. This study aims to develop a stable architecture for a Smart IoT Monitoring System to address ever-changing monitoring needs and enhance monitoring efficiency and automation capabilities. The objective of this research is to establish a highly flexible, scalable, secure, and reliable system capable of integrating advanced sensing technologies and data processing algorithms for the efficient collection, storage, and analysis of slope imagery and water level monitoring data. To achieve this goal, this study utilizes Raspberry Pi as a lightweight server and ESP32 on the sensor end to reduce power consumption. Additionally, during system overloads, the system employs Line Notify to instantly inform administrators, reducing the time cost typically spent on system monitoring.
The research methodology involves analyzing the requirements of different use cases to select a suitable system architecture. Based on the architectural design, this study will choose and optimize sensing technologies and data processing algorithms applicable to various scenarios to ensure efficient system operation. Furthermore, the study will implement robust security mechanisms to ensure data safety and privacy, along with designing user-friendly applications to visually present data to users.
The expected outcomes include implementing a Smart IoT Monitoring System architecture characterized by high flexibility, scalability, and automation. This system will be applied to slope imagery and water level monitoring, providing significant technical support for the development and application of smart monitoring systems. It is anticipated that this research will promote broader and deeper integration of IoT technologies across various domains.
[1] Espressif Systems, “ESP32 Overview, ” [Online]. Available: https://www.espressif.com/en/products/hardware/esp32/overview, accessed Sep. 23, 2024.
[2] Espressif Systems, “ADC, ” Espressif IoT Development Framework [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32/api-reference/peripherals/adc.html, accessed Sep. 23, 2024.
[3] Grafana Labs, “Grafana, ” [Online]. Available: https://grafana.com/, accessed Sep. 23, 2024.
[4] H. Thirugnanam, S. Uhlemann, R. Reghunadh, M. V. Ramesh, and V. P. Rangan, “Review of Landslide Monitoring Techniques With IoT Integration Opportunities,” *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 15, pp. 5317, 2022.
[5] J. W. Jolles, “Broad-scale applications of the Raspberry Pi: A review and guide for biologists, ” Methods in Ecology and Evolution, vol. 12, pp. 1562–1579, 2021. doi:10.1111/2041-210X.13652.
[6] M. S. U. Chowdhury, T. B. Emran, S. Ghosh, A. Pathak, M. M. Alam, N. Absar, K. Andersson, and M. S. Hossain, “IoT Based Real-time River Water Quality Monitoring System,” in *The 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC)*, Halifax, Canada, Aug. 19-21, 2019.
[7] M. T. Abraham, N. Satyam, B. Pradhan, and A. M. Alamri, “IoT-Based Geotechnical Monitoring of Unstable Slopes for Landslide Early Warning in the Darjeeling Himalayas,” *Sensors*, vol. 20, no. 9, art. 2611, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/9/2611
[8] M. Wu, T. Lu, F. Ling, J. Sun, and H. Du, “Research on the architecture of Internet of Things, ” in 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 2010, pp. 484-487.
[9] N. R. Moparthi, C. Mukesh and P. Vidya Sagar, "Water Quality Monitoring System Using IOT," 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 2018, pp. 1-5, doi: 10.1109/AEEICB.2018.8480963.
[10] Node.js, “Node.js documentation, ” [Online]. Available: https://nodejs.org/docs/latest/api/, accessed Sep. 23, 2024.
[11] T. Perumal, M. N. Sulaiman and C. Y. Leong, "Internet of Things (IoT) enabled water monitoring system," 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2015, pp. 86-87, doi: 10.1109/GCCE.2015.7398710.
[12] Timescale, “TimescaleDB, ” [Online]. Available: https://www.timescale.com/, accessed Sep. 23, 2024.
[13] V. Lakshmikantha, A. Hiriyannagowda, A. Manjunath, A. Patted, J. Basavaiah, and A. A. Anthony, “IoT based smart water quality monitoring system,” *Global Transitions Proceedings*, vol. 2, no. 2, pp. 181-186, Nov. 2021.
[14] Wi-Fi CERTIFIED HaLow™ 技術概述 (2021) | Wi-Fi Alliance, [Online]. Available: https://www.wi-fi.org/zh-hant/file/wi-fi-certified-halowjishugaishu-2021, 2021.
[15] 王文娟, “物聯網概念及應用,” 經濟前瞻, no. 168, pp. 29-36, Nov. 2016.
[16] 朱崇銳、林冠瑋、呂喬茵、張志新、李恩瑞、劉哲欣, “落石地動自動監測流程設計與測試,” Chin. Civ. Hydraul. Eng. J., vol. 36, no. 3, pp. 285-291, May 2024.
[17] 吳仁明, “智慧校園灑水系統建置初探, ” 東亞論壇, no. 513, pp. 15-24, Sep. 2021
[18] 林宜清、董建樺、李宗翰, “山坡地滑動監測技術開發新應用, ” 營建知訊, no. 396, pp. 12-29, Jan. 2016.
[19] 張晉豪, “無線感測網路與無線區域網路應用於坡地監測適用性評估,” 中原大學土木工程學系學位論文,2007
[20] 張登林、楊昇學、葉克家, “結合AI平台與IoT識別河川水位與都市淹水, ” 農業工程學報, vol. 67, no. 1, pp. 14-27, Mar. 2021.
[21] 黃亦敏、方耀民, “物聯網於山坡地監測之應用, ” 土木水利, vol. 47, no. 1, pp. 79-86, Feb. 2020.
[22] 黃偉、張秦耀、廖國凱、廖仁忠, “智慧聯網應用及其技術簡介:以智慧化灌溉渠道系統為例, ” 電工通訊季刊, vol. 2015, no. 1, pp. 24-31, Mar. 2015.
[23] 黃國永, “用水管理監測地下水源系統建置探討,” 台灣自來水公司第十二區管理處技術士,2011
[24] 黃國豪、黃效禹、林建良, “智慧型水位辨識結合物聯網應用於土石流防災監測, ” 土木水利, vol. 47, no. 3, pp. 30-35, Jun. 2020.
[25] 臺北智慧城市專案辦公室團隊、徐進壽, “結合物聯網翡翠水庫智慧管理, ” 營建知訊, no. 430, pp. 4-9, Nov. 2018.
[26] 劉日順、董志強、柯芳蘭、王派泓, “物聯網技術精進灌溉管理應用探討, ” 台灣水利, vol. 70, no. 3, pp. 40-52, Sep. 2022.
[27] 劉振宇、李金靖、張弘岳、黃旭輝、鍾淑女、蔡明璋、林家宏、邱建華, “桃園市下水道智慧雲端物聯網監測系統發展與應用, ” 中國土木水利工程學刊, vol. 32, no. 5, pp. 453-462, Sep. 2020.
[28] 謝佑明, “應用IoT與MEMS於坡地監測系統之開發經驗分享, ” 土木水利, vol. 47, no. 1, pp. 70-78, Feb. 2020.
[29] 謝耿順, “運用物聯網架構之環境監控系統, ” 碩士論文, 國立暨南國際大學科技學院光電科技碩士學位學程在職專班, 南投, 2020.