研究生: |
陳廷睿 Ting-Ruei Chen |
---|---|
論文名稱: |
利用FeS2 奈米晶體敏化TiO2光電極在 近紅外光電化學產氫之研究 NIR Photoelectrochemical hydrogen generation using Pyrite FeS2 Nanocrystals sensitized TiO2 photoelectrodes |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 二硫化鐵 、近紅外光 、光電化學 、產氫 |
英文關鍵詞: | Pyrite, NIR, Photoelectrochemical, Hydrogen generation |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,利用溶液法合成二硫化鐵奈米晶體 (FeS2 NCs)組裝在二氧化鈦 (TiO2)薄膜表面,作為近紅外光敏化劑應用於光電化學系統 (PEC)進行水分解產氫。研究中先利用溶膠凝膠法製備 TiO2/FTO,並以溶液法合成 FeS2,旋鍍於 TiO2/FTO上,形成 FeS2/TiO2/FTO異質接面光電極。
實驗中利用近紅外光雷射 (波長=808nm 強度=300mW/cm2 )照射光電極,採用 0.25M Na2S + 0.35M Na2SO3作為電解液。相較於單純 TiO2以及利用硫化鉛 (PbS)、硒化鉻 (CdSe)取代 FeS2之光電極,相較之下, FeS2/TiO2/FTO異質接面光電極對近紅外光有較佳的表現,在外電壓 0.9V vs. RHE時有最佳飽和光電流密度 6 mA/cm2 ,光電流轉換效率為0.86%,其理論產氫速率約為2.5mL/cm2-h。
最後我們呈現出以地球含量多且非毒性的FeS2結合金屬氧化物所形成的異質接面光電極,在近紅外光下有優異的光電化學產氫之表現,這在利用近紅外光能量產氫技術發展中,是相當重要的一環。
In this study, we demonstrated the sensitizer of near infrared (NIR) based on solution processable pyrite FeS2 NCs spun onto porous TiO2 films (FeS2/TiO2/FTO film) for Photoelectrochemical (PEC) hydrogen generation. Experimentally, for fabricating a FeS2/TiO2/FTO film, a TiO2/FTO substrate was first prepared by sol-gel method. Then, FeS2 NCs were spun onto TiO2/FTO substrate to form FeS2/TiO2/FTO heterojunction photoanode.
PEC cell of FeS2/TiO2/FTO film were placed in the electrolyte of 0.25M Na2S and 0.35M Na2SO3 and illuminated under NIR laser (808nm, I0=300mW/cm2). Compared with lead sulfide (PbS), cadmium selenide (CdSe) on TiO2 photoanode, FeS2/TiO2/FTO heterojunction photoanode show a better NIR photoactivity and higher saturation current density (6mA/cm2 at 0.9V vs. RHE). The conversion efficiency of photoelectrochemical cell to hydrogen was 2.64%, leading to 2.5mL/cm2-h.
In summary, we demonstrated that the earth-abundant and non-toxic FeS2 nanocrystals /metal oxides heterojunction photoanode showed an excellent performance of PEC hydrogen generation under NIR. It’s important step to further improve the overall PEC performance by absorbing light extended to NIR range.
1. NASA. NASA Study Finds World Warmth Edging Ancient Levels.2006; Available from: http://www.nasa.gov/vision/earth/environment/world_warmth.html
2. J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30,521 – 544
3. Hydrogen Facts Chemical & Physical Properties of Hydrogen http://chemistry.about.com/od/elementfacts/a/hydrogen.htm
4. How to ensure H2S safety on offshore rigs http://www.drillingcontractor.org/how-to-ensure-h2s-safety-on-offshore-rigs-8267
5. J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30 ,521 – 544
6. T. Bak, J. Nowotny ,M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy, 2002, 27991 – 1022
7. Ajay K. Ray and Antonie A. C. M. Beenackers, American Institute of Chemical Engineers,1988,44,2
8. US Department of Energy, N.R.E.L., Hydrogen the fuel for the future.
9. 曲新生、呂錫民、陳發林, 產氫與儲氫技術 The hydrogen
production and storage technology 2007, Taipei: 五南
10. A. Steinfeld, International Journal of Hydrogen Energy , 2002,27,611 – 619
11. H. Ohya,M. Yatabe,M. Aihara, Y. Negishi, T. Takeuchi, International Journal of Hydrogen Energy ,2002 ,27, 369–376
12. Abraham Kogan, International Journal of Hydrogen Energy , 2000 ,25 1043-1050
13. James E. Funk, International Journal of Hydrogen Energy , 2001 ,29,185-190
14. T. Kodama ,Y. Kondoh ,R. Yamamoto ,H. Andou,N. Satou , Solar Energy ,2005,78,623–631
15. U. Balachandran, T.H. Lee, S. Wang, S.E. Dorris, International Journal of Hydrogen Energy ,2004,29,291 – 296
16. A.J.Appleby,Nature,1975,253,257-258
17. J.W. van Groenestijn, J.H.O. Hazewinkel,M. Nienoord, P.J.T. Bussmann, International Journal of Hydrogen Energy,2002,27,1141 – 1147
18. Nitai Basak ,Debabrata Das, World J Microbiol Biotechnol ,2007, 23,31–42
19. Electrolysis produces hydrogen http://cafcp.org/stations/howitworks
20. C. E. THOMAS,B. D. JAMES , F. D. LOMAX, Jr., International Journal of Hydrogen Energy ,1998,23,949-966
21. Akira Fujishima,Kenichi Honda,Natrue,1972,238,37-38
22. Yuh-Lang Lee,Ching-Fa Chi, and Shih-Yi Liau, Chem. Mater. 2010, 22, 922–927
23. T. Bak, J. Nowotny ,M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy ,2002,27,991 – 1022
24. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, International Journal of Hydrogen Energy,2007,32,2609 – 2629
25. Michael Grätzel,Nature,2001,414,338-344
26. Akihiko Kudo, Yugo Miseki, Chem. Soc. Rev., 2009, 38, 253–278
27. Ryu Abe, Journal of Photochemistry and Photobiology C , 2010 , 11,179-209
28. Akihiko Kudo, Hideki Kato, Issei Tsuji, Chemistry Letters , 2004 , 33,1534-1539
29. Akihiko Kudo,Catalysis Surveys from Asia, 2003,7,31-38
30. Xiliang Nie, Shuping Zhuo,GloriaMaeng,and Karl Sohlberg, International Journal of Photoenergy,2009,10,1155-1177
31. Ulrike Diebold,Surface Science Report,2003,48,53-229
32. 徐國淦,以化學浴沉積法製備 CdS/TiO2光陽極進行光電化學產氫之研究,成功大學,2010
33. Anders Hagfeldtt , Michael Gratzel, American Chemical Society , 1995,95,49-68
34. H. Gerischer, and A. Heller, J. Electrochem. Soc.,1992,139, 113-118
35. K. Connelly A. K. Wahab Hicham Idriss, Mater Renew Sustain Energy,2012,1:3,1-12
36. Ennaoui, A.; Fiechter, S.; Jaegermann, W.’ Tributsch, H. , J.Electrochem. Soc.,1986 , 133 , 97-106
37. J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications,1996,98,581-585
38. A. ENNAOUI and H. TRIBUTSCH, Solar Energy Materials, 1986,14, 461-474
39. Fahhad Alharbi , John D. Bass , Abdelmajid Salhi , Ahmed Alyamani , Ho-Cheol Kim ,Robert D. Miller , Renewable Energy , 2011, 36 , 2753-2758
40. Marc Blanchard , Maria Alfredsson , John Brodholt , Kate Wright ,C. Richard A. Catlow , Geochimica et Cosmochimica Acta , 2007, 71 624–630
41. Jun Hu, Yanning Zhang, Matt Law, and Ruqian Wu, J. Am. Chem. Soc. 2012, 134, 13216−13219
42. A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, Ch. H6pfner and H. Tributsch, Solar Energy Materials and Solar Cells,1993 ,29,289-370
43. J. P. Wilcoxon, P. P. Newcomer and G. A. Samara Solid State Communications 1996, 98, 581-654
44. P. Gao, Yi Xie, L. Ye, Y. Chen, Q. Guo, Crystal Growth & Design 2006, 6, 584.
45. B. Ouertani, J. Ouerfelli, M. Saadoun, B. BessaRs, H. Ezzaouia, J.C. Bernede Materials Characterization,2005, 54, 431.
46. S. W. Lehner, K .S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306.
47. Surbhi Choudhary , Sumant Upadhyay , Pushpendra Kumar , Nirupama Singh,Vibha R. Satsangi , Rohit Shrivastav , Sahab Dass , International journal of hydrogen energy,2012,1-18
48. Jia Hong Pan, X.S. Zhao, , Wan In Lee, Chemical Engineering Journal , 2011,170, 363–380
49. Samy A. Khalil , A.M. Shaffie , Advances in Space Research , 2013,51,1727-1733
50. Pietro P. Altermatt, Tobias Kiesewetter, Klaus Ellmer, Helmut Tributsch , Solar Energy Materials & Solar Cells, 2002 , 71,181–195
51. Cyruswadua , A . Paulalivisatos , Anddanielm . Kammen , Environ. Sci. Technol. 2009, 43, 2072–2077
52. Michael Grätzel,Nature,2001,414,338-344
53. J. F. HouIihan , J. R. Hamilton , Materials Research Bulletin 1979,14,915-920
54. Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr, Science,2002, 297, 2243-2245
55. M. Radecka, M. Wierzbicka, S. Komornicki, M. Rekas, Physica B 2004 , 348,160–168
56. Quan X,Yang S,Ruan X,Zhao H, Environ. Sci. Technol ,2005, 39, 3770-3775
57. Karthik Shankar, Gopal K Mor, Haripriya E Prakasam, Sorachon Yoriya, Maggie Paulose, Oomman K Vargheseand Craig A Grimes , Nanotechnology, 2007, 18 ,065707
58. Kazuhiko Maeda , Kazunari Domen , J. Phys. Chem. C , 2007, 111, 7851-7861
59. Adrian W. Bott, Current Separations , 1998 , 17:3 ,87-91
60. Arthur J. Nozik, Ru1diger Memming, J. Phys. Chem. 1996, 100, 13061-13078
61. Allen J. Bard Larry R. Faulkner,ELECTROCHEMICAL METHODS Fundamentals and Applications , 2nd,WILEY
62. Roel van de Krol , Michael GratzelPhotoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology),2nd, WILEY
63. Yu. V. Pleskov, Solar Energy Conversion. A Photoelectrochemical approach,Springer Berlin, 1990.
64. Dinghua Bao, Heqing Yang, Liangying Zhang, and Xi Yao, Phys. stat. sol,1998,169,227-233
65. J. G. Mavroides, J. A. Kafalas, and D. F. Kolesar, Applied Physics Letters, 1976, 28, 241-243,
66. K. H. Yoon, and T. H. Kim, Journal of Solid State Chemistry, 1987, 67, 359-363,
67. J. H. Kennedy, and K. W. Frese, Journal of the Electrochemical Society, 1976 ,123, 1683-1686
68. Gary Hodes,David Cahen , Joost Mananssen , Nature , 1976,260, 312 – 313
69. S. Licht, B. Wang, S. Mukerji, T. Soga , M. Umeno, H. Tributsch, J. Phys. Chem. B 2000, 104, 8920-8924
70. Kenneth J. McDonald and Kyoung-Shin Choi, Chem. Mater. 2011, 23, 4863–4869
71. Diane K. Zhong and Daniel R. Gamelin, J. AM. CHEM. SOC. 2010, 132, 4202–4207
72. Mutong Niu, Feng Huang, Lifeng Cui, Ping Huang, Yunlong Yu, Yuansheng Wang , ACS Nano,2010,4, 681–688
73. Yang Hou, Fan Zuo, Alex Dagg, and Pingyun Feng, Nano Lett. 2012, 12, 6464−6473
74. A. Ennaoui, S. Fiechter, W. Jaegermann , H. Tributsch, J.Electrochem. Soc. 1986 133,97-106
75. N. Serpone, and E. Pelizzetti, Photocatalysis fundamentals and applications, 1989,WILEY
76. Minsu Seol, Ji-Wook Jang, Seungho Cho, Jae Sung Lee, Kijung Yong , Chem. Mater.,2013,25, 184–189
77. Di-Yan Wang , You-Ting Jiang , Chih-Cheng Lin , Shao-Sian Li , Yaw-Tyng Wang , Chia-Chun Chen , Chun-Wei Chen , Adv. Mater. 2012, 24, 3415–3420
78. J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications , 1996 , 98,581-585
79. Cyrus Wadia, Yue Wu, Sheraz Gul, Steven K. Volkman, Jinghua Guo, A. Paul Alivisatos, Chem. Mater. 2009, 21, 2568–2570
80. Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Applied Physics Letters 1990, 57, 25.
81. Jin Joo, Hyon Bin Na, Taekyung Yu, Jung Ho Yu, Young Woon Kim, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon, J. AM. CHEM. SOC. 2003, 125, 11100-11105
82. W. William Yu and Xiaogang Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371
83. Xiangying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai Qian, Inorg. Chem. 2005, 44, 951-954
84. H. Duana, Y.F. Zhenga, Y.Z. Donga, X.G. Zhangb, Y.F. Sun, Materials Research Bulletin , 2004 , 39,1861–1868
85. Ghada I. Koleilat, Larissa Levina, Harnik Shukla, Stefan H. Myrskog, Sean Hinds, Andras G. Pattantyus-Abraham, and Edward H. Sargent, ACS NANO,2008,2,833-840
86. Ethan J. Klem, Harnik Shukla, Sean Hinds, Dean D. MacNeil, Larissa Levina et al. APPLIED PHYSICS LETTERS,2008,92, 212105
87. James Puthussery, Sean Seefeld, Nicholas Berry, Markelle Gibbs, Matt Law , J. Am. Chem. Soc. 2011, 133, 716–719
88. Yu Bi,Yongbo Yuan, Christopher L. Exstrom,Scott A. Darveau, Jinsong Huang, Nano Lett. 2011, 11, 4953–4957
89. Nicholas Berry , Ming Cheng , Craig L. Perkins , Moritz Limpinsel , John C. Hemminger , Matt Law, Adv. Energy Mater , 2012 , 2 , 1124-1135