簡易檢索 / 詳目顯示

研究生: 廖悅廷
Liao, Yueh-Ting
論文名稱: 純物質 Rutin 對於改善 Aβ 寡聚體所引起神經細胞病理狀態之探討
To investigate the mechanism of Rutin on improving Aβ oligomers-induced neuronal pathophysiology
指導教授: 林炎壽
Lin, Yenshou
口試委員: 林炎壽
Lin, Yenshou
李冠群
Lee, Guan-Chiun
梁美智
Liang, Mei-Chih
口試日期: 2024/12/16
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 阿茲海默症β 類澱粉蛋白Rutin鈣離子粒線體膜電位
英文關鍵詞: Alzheimer's disease, amyloid beta, Rutin, calcium, mitochondrial membrane potential
DOI URL: http://doi.org/10.6345/NTNU202500003
論文種類: 學術論文
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 一、阿茲海默症 1 二、β 類澱粉蛋白之形成 2 三、β 類澱粉蛋白與麩胺酸傳遞 2 四、β 類澱粉蛋白與鈣離子 4 五、β 類澱粉蛋白與粒線體 5 六、阿茲海默症的臨床用藥 6 七、Rutin與阿茲海默症 6 第二章 研究動機與目的 8 第三章 研究材料與實驗方法 9 一、藥劑 9 二、小鼠大腦皮質神經細胞初級培養 9 三、細胞免疫螢光染色法 (Immunocytochemistry, ICC) 10 四、β類澱粉蛋白寡聚體及蛋白質斑點印漬分析 (Dot Blot assay) 11 五、Fura-2/AM (Fura-2 acetoxymethyl ester) 之鈣離子檢測 12 六、蛋白質萃取及西方墨點法 12 七、粒線體膜電位分析 13 八、統計分析 14 第四章 結果 15 一、Aβ、NMDA、AMPA及Rutin個別對細胞內鈣離子濃度變化之測量 15 二、Rutin預處理可抑制或延緩Aβ及NMDA引起的細胞內鈣離子濃度上升 15 三、NMDA造成細胞內鈣離子濃度變化後,Rutin可快速降低其誘發的作用 16 四、Rutin未能改善Aβ刺激對ERK訊息傳遞路徑的影響 17 五、Rutin、Aβ及NMDA個別對粒線體膜電位變化之測量 17 六、Rutin減緩Aβ刺激對粒線體膜電位的影響 18 七、Rutin改善NMDA刺激對粒線體膜電位之變化 19 第五章 討論 20 圖表 24 圖一、Aβ、NMDA、AMPA及Rutin對細胞內鈣離子之濃度變化測試 25 圖二、Rutin抑制Aβ及延緩NMDA刺激造成的細胞內鈣離子濃度變化 27 圖三、Rutin於刺激後加入,可降低NMDA刺激所誘發的細胞內鈣離子濃度變化 29 圖四、Rutin對Aβ刺激所誘導的ERK蛋白磷酸化無明顯作用 31 圖五、Rutin對細胞粒線體膜電位之影響 33 圖六、Aβ刺激所誘導的細胞粒線體膜電位變化 35 圖七、NMDA刺激所誘導的細胞粒線體膜電位變化 37 圖八、Rutin減緩Aβ刺激所誘導的細胞粒線體膜電位變化 39 圖九、Rutin減緩NMDA刺激所誘導的細胞粒線體膜電位變化 41 參考文獻 42 附錄 50 附錄一、初級培養小鼠大腦皮質神經細胞免疫螢光染色 51 附錄二、β類澱粉蛋白寡聚體及蛋白質斑點印漬分析 53 附錄三、HEK 293 細胞測試FCCP使用條件 55

    Bezprozvanny, I. (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med, 15, 89-100.
    Bhatia, R., Lin, H. & Lal, R. (2000) Fresh and globular amyloid beta protein (1-42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. Faseb j, 14, 1233-1243.
    Brewer, G.J. & Torricelli, J.R. (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc, 2, 1490-1498.
    Bukke, V.N., Archana, M., Villani, R., Romano, A.D., Wawrzyniak, A., Balawender, K., Orkisz, S., Beggiato, S., Serviddio, G. & Cassano, T. (2020) The dual role of glutamatergic neurotransmission in Alzheimer's disease: from pathophysiology to pharmacotherapy. Int J Mol Sci, 21, 7452.
    Calvo-Rodriguez, M., Hou, S.S., Snyder, A.C., Kharitonova, E.K., Russ, A.N., Das, S., Fan, Z., Muzikansky, A., Garcia-Alloza, M., Serrano-Pozo, A., Hudry, E. & Bacskai, B.J. (2020) Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nat Commun, 11, 2146.
    Casley, C.S., Canevari, L., Land, J.M., Clark, J.B. & Sharpe, M.A. (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem, 80, 91-100.
    Castillo, C., Bravo-Arrepol, G., Wendt, A., Saez-Orellana, F., Millar, C., Burgos, C.F., Gavilán, J., Pacheco, C., Ahumada-Rudolph, R., Napiórkowska, M., Pérez, C., Becerra, J., Fuentealba, J. & Cabrera-Pardo, J.R. (2023) Neuroprotective properties of eudesmin on a cellular model of amyloid-β peptide toxicity. J Alzheimers Dis, 94, S97-s108.
    Cha, M.Y., Han, S.H., Son, S.M., Hong, H.S., Choi, Y.J., Byun, J. & Mook-Jung, I. (2012) Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One, 7, e34929.
    Chang, K.W., Zong, H.F., Ma, K.G., Zhai, W.Y., Yang, W.N., Hu, X.D., Xu, J.H., Chen, X.L., Ji, S.F. & Qian, Y.H. (2018) Activation of α7 nicotinic acetylcholine receptor alleviates Aβ(1-42)-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int, 120, 238-250.
    Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K. & Xu, H.E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin, 38, 1205-1235.
    Chen, P.J., Yao, C.A., Chien, P.C., Tsai, H.J., Chen, Y.R., Chuang, J.H., Chou, P.L., Lee, G.C., Lin, W. & Lin, Y. (2024) A paeonol derivative, 6’-methyl paeonol, attenuates Aβ-induced pathophysiology in cortical neurons and in an Alzheimer's disease mice model. ACS Chem Neurosci, 15, 724-734.
    Cheng, K.C., Huang, C.Y., Hsieh, T.C. & Chiang, H.C. (2022) Disrupted cellular calcium homeostasis is responsible for Aβ-induced learning and memory damage and lifespan shortening in a model of Aβ transgenic fly. IUBMB Life, 74, 754-762.
    Choi, J.Y., Lee, J.M., Lee, D.G., Cho, S., Yoon, Y.H., Cho, E.J. & Lee, S. (2015) The n-butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer's disease. J Med Food, 18, 631-641.
    Colović, M.B., Krstić, D.Z., Lazarević-Pašti, T.D., Bondžić, A.M. & Vasić, V.M. (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol, 11, 315-335.
    Cueva, M., Antequera, D., Ordoñez-Gutierrez, L., Wandosell, F., Camins, A., Carro, E. & Bartolome, F. (2022) Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer’s disease experimental models. Sci Rep, 12, 10092.
    Daniels, W.M., Hendricks, J., Salie, R. & Taljaard, J.J. (2001) The role of the MAP-kinase superfamily in beta-amyloid toxicity. Metab Brain Dis, 16, 175-185.
    Elmazoglu, Z., Galván-Arzate, S., Aschner, M., Rangel-López, E., Bayraktar, O., Santamaría, A. & Karasu, Ç. (2021) Redox-active phytoconstituents ameliorate cell damage and inflammation in rat hippocampal neurons exposed to hyperglycemia+Aβ(1-42) peptide. Neurochem Int, 145, 104993.
    Emilsson, L., Saetre, P. & Jazin, E. (2006) Alzheimer's disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol Dis, 21, 618-625.
    Enogieru, A.B., Haylett, W., Hiss, D.C., Bardien, S. & Ekpo, O.E. (2018) Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev, 2018, 6241017.
    Fani, G., Mannini, B., Vecchi, G., Cascella, R., Cecchi, C., Dobson, C.M., Vendruscolo, M. & Chiti, F. (2021) Aβ oligomers dysregulate calcium homeostasis by mechanosensitive activation of AMPA and NMDA receptors. ACS Chem Neurosci, 12, 766-781.
    Ferreira, R.S., Teles-Souza, J., Dos Santos Souza, C., Pereira É, P.L., de Araújo, F.M., da Silva, A.B., Castro, E.S.J.H., Nonose, Y., Núñez-Figueredo, Y., de Assis, A.M., Souza, D.O., Costa, M.F.D., Moreira, J.C.F., Costa, S.L. & da Silva, V.D.A. (2021) Rutin improves glutamate uptake and inhibits glutamate excitotoxicity in rat brain slices. Mol Biol Rep, 48, 1475-1483.
    Ferreiro, E., Oliveira, C.R. & Pereira, C. (2004) Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. J Neurosci Res, 76, 872-880.
    Ghasemi, R., Moosavi, M., Zarifkar, A., Rastegar, K. & Maghsoudi, N. (2015) The interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection in primary hippocampal cell culture. J Mol Neurosci, 57, 325-334.
    Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q. & Zhang, X. (2015) Nanotheranostics: congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer's disease in APPswe/PS1dE9 transgenic mice. Adv Mater, 27, 5499-5505.
    Kastanenka, K.V., Bussiere, T., Shakerdge, N., Qian, F., Weinreb, P.H., Rhodes, K. & Bacskai, B.J. (2016) Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 Mice. J Neurosci, 36, 12549-12558.
    Kim, E., Kim, H., Jedrychowski, M.P., Bakiasi, G., Park, J., Kruskop, J., Choi, Y., Kwak, S.S., Quinti, L., Kim, D.Y., Wrann, C.D., Spiegelman, B.M., Tanzi, R.E. & Choi, S.H. (2023) Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron, 111, 3619-3633.e3618.
    Kuchibhotla, K.V., Goldman, S.T., Lattarulo, C.R., Wu, H.Y., Hyman, B.T. & Bacskai, B.J. (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 59, 214-225.
    Kuo, L.-C. (2016) Pure compounds TR and AG within Chinese herbal medicines mediate glutamate receptors to attenuate Aβ-induced neuronal pathophysiology. Master thesis, National Taiwan Normal University.
    Lee, S.J., Nam, E., Lee, H.J., Savelieff, M.G. & Lim, M.H. (2017) Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev, 46, 310-323.
    Li, L.M., Liu, Q.H., Qiao, J.T. & Zhang, C. (2009) Abeta(31-35)-induced neuronal apoptosis is mediated by JNK-dependent extrinsic apoptosis pathway. Neurosci Bull, 25, 361-366.
    Li, S., Ji, X., Gao, M., Huang, B., Peng, S. & Wu, J. (2023) Endogenous amyloid-formed Ca(2+)-permeable channels in aged 3xTg AD mice. Function (Oxf), 4, zqad025.
    Lin, T.S., Tsai, H.J., Lee, C.H., Song, Y.Q., Huang, R.S., Hsieh-Li, H.M., Liang, M.C. & Lin, Y. (2017) An improved drugs screening system reveals that baicalein ameliorates the Aβ/AMPA/NMDA-induced depolarization of neurons. J Alzheimers Dis, 56, 959-976.
    Liu, Y., Yao, J., Song, Z., Guo, W., Sun, B., Wei, J., Estillore, J.P., Back, T.G. & Chen, S.R.W. (2021) Limiting RyR2 open time prevents Alzheimer's disease-related deficits in the 3xTG-AD mouse model. J Neurosci Res, 99, 2906-2921.
    Lu, Q., Zhu, H., Liu, X. & Tang, C. (2020) Icariin sustains the proliferation and differentiation of Aβ(25-35)-treated hippocampal neural stem cells via the BDNF-TrkB-ERK/Akt signaling pathway. Neurol Res, 42, 936-945.
    Magrane, J., Christensen, R.A., Rosen, K.M., Veereshwarayya, V. & Querfurth, H.W. (2006) Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to beta-amyloid. Exp Cell Res, 312, 996-1010.
    Manczak, M., Anekonda, T.S., Henson, E., Park, B.S., Quinn, J. & Reddy, P.H. (2006) Mitochondria are a direct site of Abeta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 15, 1437-1449.
    Marshall, C.A., McBride, J.D., Changolkar, L., Riddle, D.M., Trojanowski, J.Q. & Lee, V.M. (2022) Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun, 10, 30.
    Mizera, J., Kazek, G., Pomierny, B., Bystrowska, B., Niedzielska-Andres, E. & Pomierny-Chamiolo, L. (2022) Maternal high-fat diet during pregnancy and lactation disrupts NMDA receptor expression and spatial memory in the offspring. Mol Neurobiol, 59, 5695-5721.
    Morishima, Y., Gotoh, Y., Zieg, J., Barrett, T., Takano, H., Flavell, R., Davis, R.J., Shirasaki, Y. & Greenberg, M.E. (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci, 21, 7551-7560.
    Pinky, P.D., Pfitzer, J.C., Senfeld, J., Hong, H., Bhattacharya, S., Suppiramaniam, V., Qureshi, I. & Reed, M.N. (2023) Recent insights on glutamatergic dysfunction in Alzheimer's disease and therapeutic implications. Neuroscientist, 29, 461-471.
    Poon, H.F., Shepherd, H.M., Reed, T.T., Calabrese, V., Stella, A.M., Pennisi, G., Cai, J., Pierce, W.M., Klein, J.B. & Butterfield, D.A. (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging, 27, 1020-1034.
    Pu, F., Mishima, K., Irie, K., Motohashi, K., Tanaka, Y., Orito, K., Egawa, T., Kitamura, Y., Egashira, N., Iwasaki, K. & Fujiwara, M. (2007) Neuroprotective effects of Quercetin and Rutin on spatial memory impairment in an 8-Arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci., 104, 329-334.
    Rai, S.N., Dilnashin, H., Birla, H., Singh, S.S., Zahra, W., Rathore, A.S., Singh, B.K. & Singh, S.P. (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res, 35, 775-795.
    Raulin, A.C., Doss, S.V., Trottier, Z.A., Ikezu, T.C., Bu, G. & Liu, C.C. (2022) ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies. Mol Neurodegener, 17, 72.
    Reddy, P.H., McWeeney, S., Park, B.S., Manczak, M., Gutala, R.V., Partovi, D., Jung, Y., Yau, V., Searles, R., Mori, M. & Quinn, J. (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet, 13, 1225-1240.
    Reddy, P.H., Yin, X., Manczak, M., Kumar, S., Pradeepkiran, J.A., Vijayan, M. & Reddy, A.P. (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease. Hum Mol Genet, 27, 2502-2516.
    Resende, R., Moreira, P.I., Proença, T., Deshpande, A., Busciglio, J., Pereira, C. & Oliveira, C.R. (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med, 44, 2051-2057.
    Ryan, T.M., Caine, J., Mertens, H.D., Kirby, N., Nigro, J., Breheney, K., Waddington, L.J., Streltsov, V.A., Curtain, C., Masters, C.L. & Roberts, B.R. (2013) Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ, 1, e73.
    Sanz-Blasco, S., Valero, R.A., Rodríguez-Crespo, I., Villalobos, C. & Núñez, L. (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One, 3, e2718.
    Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., Cummings, J. & van der Flier, W.M. (2021) Alzheimer's disease. Lancet, 397, 1577-1590.
    Schrank, S., Barrington, N. & Stutzmann, G.E. (2020) Calcium-handling defects and neurodegenerative disease. CSH PERSPECT BIO, 12.
    Söderberg, L., Johannesson, M., Nygren, P., Laudon, H., Eriksson, F., Osswald, G., Möller, C. & Lannfelt, L. (2023) Lecanemab, aducanumab, and gantenerumab - binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer's disease. Neurotherapeutics, 20, 195-206.
    Somasundaram, A., Shum, A.K., McBride, H.J., Kessler, J.A., Feske, S., Miller, R.J. & Prakriya, M. (2014) Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci, 34, 9107-9123.
    Song, L.L., Qu, Y.Q., Tang, Y.P., Chen, X., Lo, H.H., Qu, L.Q., Yun, Y.X., Wong, V.K.W., Zhang, R.L., Wang, H.M., Liu, M.H., Zhang, W., Zhang, H.X., Chan, J.T.W., Wang, C.R., Wu, J.H. & Law, B.Y.K. (2023) Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol, 61, 102637.
    Sun, X.Y., Li, L.J., Dong, Q.X., Zhu, J., Huang, Y.R., Hou, S.J., Yu, X.L. & Liu, R.T. (2021) Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease. J Neuroinflammation, 18, 131.
    Tang, B.C., Wang, Y.T. & Ren, J. (2023) Basic information about memantine and its treatment of Alzheimer's disease and other clinical applications. Ibrain, 9, 340-348.
    Tatulian, S.A. (2022) Challenges and hopes for Alzheimer's disease. Drug Discov Today, 27, 1027-1043.
    Wang, H., Yang, F., Zhang, S., Xin, R. & Sun, Y. (2021) Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis, 7, 70.
    Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G. & Zhu, X. (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. PNAS, 105, 19318-19323.
    Wang, X., Wang, W., Li, L., Perry, G., Lee, H.-g. & Zhu, X. (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta, 1842, 1240-1247.
    Wu, H.Y., Hudry, E., Hashimoto, T., Kuchibhotla, K., Rozkalne, A., Fan, Z., Spires-Jones, T., Xie, H., Arbel-Ornath, M., Grosskreutz, C.L., Bacskai, B.J. & Hyman, B.T. (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci, 30, 2636-2649.
    Xu, P.X., Wang, S.W., Yu, X.L., Su, Y.J., Wang, T., Zhou, W.W., Zhang, H., Wang, Y.J. & Liu, R.T. (2014) Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res, 264, 173-180.
    Yao, J., Irwin, R.W., Zhao, L., Nilsen, J., Hamilton, R.T. & Brinton, R.D. (2009) Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. PNAS, 106, 14670-14675.
    Yu, X.L., Li, Y.N., Zhang, H., Su, Y.J., Zhou, W.W., Zhang, Z.P., Wang, S.W., Xu, P.X., Wang, Y.J. & Liu, R.T. (2015) Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct, 6, 3296-3306.
    Zhang, H., Jiang, X., Ma, L., Wei, W., Li, Z., Chang, S., Wen, J., Sun, J. & Li, H. (2022) Role of Aβ in Alzheimer's-related synaptic dysfunction. Front Cell Dev Biol, 10, 964075.
    Zhang, Y., Chen, H., Li, R., Sterling, K. & Song, W. (2023) Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther, 8, 248.

    無法下載圖示 電子全文延後公開
    2029/12/20
    QR CODE