簡易檢索 / 詳目顯示

研究生: 卓伃蘊
Cho, Yu-Yun
論文名稱: 東台灣海岸山脈石梯坪凝灰岩及利吉層之年代學與地球化學研究
Geochronological and Geochemical Study of Shihtiping Tuff and Lichi Mélange in the Coastal Range, Eastern Taiwan
指導教授: 賴昱銘
Lai, Yu-Ming
口試委員: 李皓揚
Lee, Hao-Yang
朱美妃
Chu, Mei-Fei
賴昱銘
Lai, Yu-Ming
口試日期: 2022/01/06
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 東台灣海岸山脈石梯坪凝灰岩基性包體利吉混同層地球化學鋯石鈾鉛定年學
英文關鍵詞: Coastal Range, Shihtiping Tuff, mafic enclave, Lichi mélange, geochemistry, zircon U-Pb geochronology
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200130
論文種類: 學術論文
相關次數: 點閱:81下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海岸山脈地層層序中都鑾山層為島弧火山層序,其最上層為石梯坪凝灰岩,屬於島弧火山演化末期的岩相,此層出露為中性至酸性的中酸性凝灰岩,而利吉層為大陸邊緣沉積物與海洋地殼蛇綠岩系之殘塊所組成,並於弧陸碰撞過程中堆積在海岸山脈地層層序中。本研究於月眉火山嶺頂地區上層的中酸凝灰岩層,以及下層的火山角礫岩層當中採集數個安山岩岩塊;於石梯坪地區的中酸凝灰岩層中採集一個輝長岩質包體,以及夾雜於岩層當中的安山岩岩塊,使用全岩地球化學與鋯石鈾鉛定年法分析,以討論其位於海岸山脈岩漿活動中的角色;在利吉地區以及電光地區利吉層的溪床上採集數顆蛇綠岩岩塊以及一顆沈積岩,透過定年以及地球化學特徵之結果,以討論其形成年代以及物質可能的來源。
    本研究在嶺頂地區並未獲得來自呂宋島弧的岩漿鋯石年代可做後續討論,而位於石梯坪凝灰岩層中的玄武質安山岩(SiO2 = 55.9 wt.%)以及石門火山角礫岩的安山岩(SiO2 = 60.6 wt.%),兩個樣本皆為低鉀的鈣鹼序列,且呈現大離子半徑元素(如:銫、銣、鈾、釷、鉀、鋇、鍶等)富集以及高場力鍵結元素(如:鈮、鉭、鈦等)虧損,屬於島弧岩漿的訊號。石梯坪地區共存於中酸性凝灰岩當中的輝長岩包體與安山岩的年代皆為4百萬年,輝長岩質包體為低鉀的鈣鹼序列,二氧化矽含量為48.3 wt.%,四個安山岩岩塊為中鉀的鈣鹼序列,二氧化矽含量為53.0至58.0 wt.%,所有的微量元素皆呈現大離子半徑元素富集以及高場力元素虧損。利吉層當中的蛇綠岩套年代為18百萬年,蛇綠岩套二氧化矽含量36.4至63.6 wt.%,岩性從基性到酸性都有,且微量元素含量變異很大,包括有銪正異常(18CWC01-1B)與負異常(18CWC01-2B)、MORB類型(18LC01-1B)以及E-MORB類型(18LC03-1B、18NSC01-1B)。而砂岩的年代結果呈現多峰值頻譜,包含火山活動期間所形成的岩漿鋯石年代,以及與華夏陸塊沈積物相似的訊號。全岩釹同位素的結果,在嶺頂地區釹值為+9.5及+9.8、石梯坪地區的安山岩質釹值為+1.3至+2.2,而輝長岩包體釹值為+0.8,利吉層的蛇綠岩套釹值為+8.7至+11.1。
    綜合實驗結果,本研究在嶺頂地區的結果為與前人研究相同,都屬於島弧岩漿的產物,但無法在年代部分給予新的討論。石梯坪地區所發現之安山岩岩塊以及輝長岩包體,與前人研究中北呂宋島弧岩漿末期噴發之地球化學特性與年代相近,本輝長岩為同時期之岩漿侵入所形成,本研究並提出在奇美火山4百萬年以來的岩漿活動模式應為三個階段:第一階段經較高程度部分熔融產生的基性岩漿上升至淺層的儲存庫,並發生地殼混染作用;第二階段經較低程度部分熔融產生的岩漿再次注入先前形成的路徑,結晶分異後形成中性岩漿;第三階段因再次注入的岩漿引發原儲存庫中的安山岩質岩漿上湧噴發,並捕獲了已形成圍岩的輝長岩,噴發後形成中酸性凝灰岩當中共存著輝長岩包體以及安山岩質的角礫岩。本研究分析的利吉層樣本,其中包含了東台灣蛇綠岩套以及沈積岩,蛇綠岩套中的岩石種類,地球化學數據因不同岩石來源而有差異,其年代分析結果指出,東台灣蛇綠岩年代為18-16百萬年,相較前人年代偏老,而在沈積岩中碎屑鋯石年代頻譜結果,則顯示其具有北呂宋島弧與華夏陸塊主要岩漿活動年代峰值的訊號。

    The Tuluanshan Formation in the Coastal Range represents the volcanic sequences of island arc. The uppermost layer is Shihtiping Tuff, which was formed during the final phase (subaerial) of the island arc sequences and composed intermediate to felsic ignimbrite. In addition, Lichi Formation consist of sedimentary rocks, volcanic rocks from the island arc, and ophiolite pieces from the oceanic crust.
    This study used whole rock geochemistry and zircon U-Pb ages to analyze the andesites collected from both upper ignimbrite layer and lower volcanic breccia in Lingding area (Yuemei volcano); and one gabbroic enclave and several andesites collected from ignimbrite layer in Shihtiping area (Chimei volcano). Meanwhile, this study also analyzed the whole rock geochemistry and zircon U-Pb ages from several igneous rocks from ophiolite. Moreover, one sandstone which were collected from riverbed in Lichi and Dianguang area to clarify the origin and the age of Lichi Mélange.
    According to the results of the zircon U-Pb dating, we did not get the magmatic zircons form Lingding area. Geochemical data shows that the samples are basaltic andesite (SiO2 = 55.9 wt.%) to andesite (SiO2 = 60.6 wt.%) and belong to low-K calc-alkaline series. Trace elements show enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, U, Th, K, Ba, and Sr) and depleted in high field strength elements (HFSE, e.g. Nb, Ta, and Ti) that represents the signal of the island arc magmatism. Both of the gabbroic enclave and the andesites from the ignimbrite layer in the Shihtiping area yielded weighted mean ages of 4 Ma. The gabbroic enclave (SiO2 = 48.3 wt.%) belongs to low-K calc-alkaline series and the other four andesitic samples (SiO2 = 53.0 to 58.0 wt.%) belong to middle-K calc-alkaline series. Their trace elements show LILE enrichment and HFSE depletion. Both of the igneous rock in the ophiolite from Lichi Mélange in Lichi and Dianguang area yielded weighted mean ages of 18 Ma. These rocks show a large variation of SiO2 concentration from 36.4 to 63.6 wt.%. They also show different types of trace elements concentration including Eu enrichment (18CWC01-1B) and depletion (18CWC01-2B), MORB type (18LC01-1B) and E-MORB type (18LC03-1B, 18NSC01-1B). The whole rock Nd isotopes in andesites from ignimbrite and breccia layers from Lingding area show εNd value of +9.5 and +9.8. The andesites from Shihtiping area show εNd values range from +2.2 to +1.3 and the gabbroic enclave has more enriched εNd value of +0.8. The igneous rocks from ophiolites in Lichi Mélange have εNd values from +11.1 to +8.7.
    The geochemical data of Shihtiping Tuff and Shihmen Volcanic Breccias from Lingding area in this study show the same island arc signals with previous researches. In the Shihtiping area, we can identify three sub-stages in Shihtiping Tuff during 4 Ma: At sub-stage 1, mafic magma generated by higher degrees of partial melting rose to the shallow reservoir and contaminated with the crustal materials. At sub-stage 2, a magma generated by lower degrees of partial melting injected into the magma reservoir and fractionated to produce an intermediate magma. At the final sub-stage, the recharged magma rose and triggered the intermediate magma assimilated with the gabbroic wall rock which was formed by mafic magma from sub-stage 1. Eventually, the intermediate magma erupted to form ignimbrite and contained andesitic breccias and coexisted with the gabbroic enclave. Age results from Lichi Mélange can be found the major magmatism signals from both the Northern Luzon Arc and Cathaysia.

    第一章、續論1 1.1前言1 1.2 海岸山脈的石梯坪凝灰岩層與利吉層1 1.3 研究目的1 第二章、地質背景3 2.1 區域地質背景3 2.2 石梯坪凝灰岩層6 2.2.1嶺頂地區7 2.2.2石梯坪地區7 2.3 中酸凝灰岩中的基性包體8 2.4 利吉層8 2.4.1蛇綠岩套8 2.4.2 蛇綠岩套的全球分佈11 2.5 華夏陸塊13 2.6 東台灣蛇綠岩與利吉混同層形成模式14 第三章、研究方法17 3.1 野外調查17 3.2 岩石光學薄片觀察22 3.3 全岩主要元素分析22 3.3.1岩石樣本分析前處理22 3.3.2揮發性物質分析22 3.3.3全岩主要元素分析23 3.4全岩微量元素分析23 3.5鋯石鈾鉛定年分析27 3.6 鍶釹同位素分析29 3.6.1 前處理與溶樣29 3.6.2分離流程30 3.6.3 上機分析31 第四章、分析結果33 4.1 石梯坪凝灰岩層33 4.1.1 嶺頂地區33 4.1.2 石梯坪地區38 4.2 利吉層50 4.2.1 利吉村50 4.2.2 電光地區55 4.3 全岩鍶釹同位素61 第五章、討論69 5.1 月眉火山嶺頂地區火山岩的地化與年代再探討69 5.2 奇美火山石梯坪地區4百萬年以來的岩漿演化過程74 5.3 海岸山脈蛇綠岩套中火成岩的年代與地化再討論83 5.4利吉層中碎屑鋯石源區之對比91 第六章、結論93 參考文獻94

    周賢元,2013,利用碎屑鋯石鈾鉛定年解析台灣中部始新統—上新統之沉積來源及剝蝕歷史,國立台灣大學地質學研究所碩士論文,共93頁。
    許菀庭,2015,東台灣蛇綠岩之洋底蝕變作用及地化特徵,國立中山大學海洋生物科技暨資源學系研究所碩士論文,共197頁。
    揭育金、莊建民、黃泉禎、鄭聲儉,2002,閩西南丁屋嶺礫岩地質特徵及時代探討。福建地質,第1期,第22卷,13-20頁。
    胡受奚、葉瑛,2006,對華夏古陸、華夏地塊及揚子-華夏古陸統一體等觀點的質疑。南京大學地球科學系,高校地質學報,第4期,第12卷,432-439頁。
    賴昱銘,2012,北呂宋島弧的火山與岩漿演化,國立台灣大學地質學研究所博士論文,共236頁。
    沈保豐、楊春亮、翟安民、胡小蝶,2004,中國前寒武紀地殼演化與成礦。天津地質礦產研究所,礦床地質,第23卷,78-89頁。
    孫大中、趙風清,1999,閩北地區前加里東期變質地層層序劃分和構造演化,前寒武研究及可持續發展探索,孫大中文集,北京地質出版社,48-55頁。
    宋聖榮,1990,台灣東部海岸山脈中段火山延研究兼論北呂宋火山島弧的演變。國立台灣大學地質學研究所博士論文,共 251 頁。
    沈渭洲、朱金初、劉昌實,1993,華南基底變質岩的Sm-Nd同位素及其對花崗岩類物質來源的制約。岩石學報,第9卷,115-124頁。
    李瑞清,2011,福建西南地區古生代至中生代地層的碎屑鋯石鈾鉛年代,國立台灣大學地質學研究所碩士論文,共98頁。
    Bacon, C. R., 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. Journal of Geophysical Research, 91, 6091-6112, doi: 10.1029/JB091iB06p06091.
    Bowin, C., Lu, R.S., Lee, C.S., and Schouten, H., 1978. Plate convergence and accretion in Taiwan-Luzon region. American Association Petroleum Geologists Bulletin, 62, 1645-1672.
    Browne, B. L., Eichelberger, J. C., Patino, L. C., Vogel, T. A., Dehn, J., Uto, K., and Hoshizumi., H., 2006. Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan. Journal of Petrology, 47(2), 301-328.
    Cawood, P. A., Kroner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., and Windley, B. F., 2009. Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), 1-36.
    Chang, L.S., 1968. A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera. (II. Northern Part) Proceedings of the Geological Society of China, 11, 19-33.
    Chang, C.P., Angelier, J., and Huang, C.Y., 2000. Origin and evolution of a mélange: The active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1-2), 43-62.
    Chang, C.P., Angelier, J., Huang, C.Y., and Liu, C.S., 2001. Structural evolution and significance of a mélange in a collisiuon belt: The Lichi Mélange and the Taiwan arc-continent collision. Geological Magazine., 138(6), 633-651,
    Chappell, B. W, White, A. J. R., and Wyborn, D., 1987. The importance of residual source material (Restite) in granite petrogenesis. Journal of Petrology, 28(6), 1111-1138.
    Chen, W.S., and Wang, Y., 1988: Development of deep-sea fan sustems in Coastal Range basin, eastern Taiwan. Acta Geological Taiwan, 26, 37-56.
    Chen, W.H., Huang, C.Y., Yan, Y., Y. Dilek, Chen, D., Wang, M.H., Zhang, X., Lan, Q., and Yu, M., 2017. Stratigraphy and provenance of fore-arc sequences in the Lichi Mélange, Coastal Range: Geological records of the active Taiwan arc- continent collision. Journal of Geophysical Research: Solid Earth, 122(9), 7408-7436.
    Chen, W.S., Chung, S.L., Chou, H.Y., Z. Zugeerbai, Shao, W.Y., and Lee, Y.H., 2017. A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206.
    Chi, W.C., Chen, L., Liu, C.S., and Brookfield, M., 2014. Development of arc-continent collision mélanges: Linking onshore geological and offshore geophysical observations of the Pliocene Lichi Mélange, southern Taiwan and northern Luzon arc, western Pacific. Tectonophysics, 636, 70-82.
    Cloos, M., 1993. Lithospheric Buoyancy and Collisional Orogenesis: Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts. Geological Society of America Bulletin, 105(6), 715-737.
    Clynne, M. A., 1999. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1), 105-132.
    Coleman, R. G., 1977. Ophiolites-Ancient Oceanic Lithosphere?, Germany, Springer-Verlag Berlin, Heidelberg.
    Coombs, M. L., Eichelberger, J. C., and Rutherford, M. J., 2003. Experimental and textural constraints on mafic enclave formation in volcanic rocks Journal of Volcanology and Geothermal Research, 119(1-4), 125-144.
    Dewey, J. F., and Bird, J., 1971. Origin and Emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14), 3179-3206.
    Dilek, Y., and Flower, M. F. J., 2003. Arc-trench rollback and fore-arc accretion: 2. A model template for ophio- lites in Albania, Cyprus, and Oman. In Dilek Y. & Robinson P. T. (eds). Ophiolites in Earth History. Geological Society of London Special Publication, vol. 218, 43-68. Blackwell, Oxford.
    Dilek, Y., and Furnes, H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere, Geological Society of America Bulletin, 123(3-4), 387-411.
    Dorais, M. J., Whitney, J. A., and Roden, M. F., 1990. Origin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada Batholith, California. Journal of Petrology, 31(4), 853-881.
    Font, Y., Liu, C.S., Schnurle, P., and Lallemand, S., 2001. Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics, 333(1-2), 135-158.
    Furnes, H., de Wit, M., and Dilek, Y., 2014. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers, 5(4), 571-603.
    Grabau, A.W., 1924. Stratigraphy of China, Part1. Palaeozoic and older. Peking, The geological survey of China.
    Hayes, D.E., and Lewis, S.D., 1984. A geophysical study of the Manila Trench, Luzon, Philippines: 1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research: Solid Earth, 89(B11), 9171-9195.
    Hernando, I. R., Petrinovic, A. A., Llambías, E. J., D'Elia, L., González, P. D., and Aragón, E., 2016. The role of magma mixing and mafic recharge in the evolution of a backarc Quaternaryn caldera: the case of Payún Matrú, western Argentina. Journal of Volcanology and Geothermal Research, 311, 150-169.
    Ho, C.S., 1969. Geological significance of potassium-argon ages of the Chimei Igneous Complex in eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 20, 63-74.
    Ho, C.S., 1986. A synthesis of geologic evolution of Taiwan. Tectonophysics 125(1-3), 1-16.
    Hsieh, R. B.J., Shellnutt, J. G., and Yeh, M.W., 2017. Age and tectonic setting of the East Taiwan Ophiolite: Implications for the growth and development of the South China Sea. Geological Magazine, 154(3), 441-455.
    Hsu, T.L., 1956. Geology of the Coastal Range eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 8, 39-64.
    Huang, C., Chan, Y.C., Hu, J.C., Angelier, J., and Lee, J.C., 2008. Detailed surface co-seismic displacement of the 1999 Chi-Chi earthquake in western Taiwan and implication of fault geometry in the shallow sub- surface, Journal of Structural Geology, 30, 1167-1176.
    Huang, C.Y., Chen, W.H., Wang, M.H., Lin, C.T., Yang, S., and Li, X., 2018. Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming fore-arc Lichi Mélange in North Luzon Trough fore-arc basin onshore and offshore eastern Taiwan: An overview. Earth-Science Reviews, 182, 102-140.
    Jahn, B. M., 1986. Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 92, 194-206.
    Juang, W.S, Bellon, H., 1984. The potassium-argon dating of the andesites from Taiwan. Proceedings of the Geological Society of China, 27, 86-100.
    Lagabrielle, Y., Guivel, C., Maury, R. C., Bourgois, J., Fourcade, E., and Martin, H., 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction: The Chile Triple Junction model. Tectonophysics, 326, 255-268.
    Lai, Y.M., Song, S.R., and Iizuka, Y., 2008. Magma mingling in the Tungho area, Coastal Range of eastern Taiwan. Journal of Volcanology and Geothermal Research, 178(4), 608-623.
    Lai, Y.M., and Song, S.R., 2013. The volcanoes of an oceanic arc from origin to destruction: a case from the northern Luzon Arc. Journal of Asian Earth Sciences, 74, 97-112.
    Lai, Y.M., Song, S.R., Lo, C.H., Lin, T.H., Chu, M.F., and Chung, S.L., 2017. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 272-273, 92-115.
    Lai, Y.M., Chu, M.F., Chen, W.S., Shao, W.Y., Lee, H.Y., and Chung, S.L., 2018. Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc. Terrestrial, Atmospheric and Oceanic sciences, 29(2), 149-186.
    Lee, Y.H., Chen, G.T., Rau, R.J., and Ching, K.E., 2008. Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan, Journal of Geophysical Research, 113, B04305.
    Li, X.H., 1999. U–Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning Orogeny in South east China and implications for Rodinia Assembly. Precambrian Research, 97(1-2), 43-57.
    Lin, C. T., Harris, R., Sun, W. D., and Zhang, G. L., 2019. Geochemical and geochronological constraints on the origin and Emplacement of the East Taiwan Ophiolite. Geochemistry Geophysics Geosystems, 20(4), 2110-2133.
    Liu, C.C., and Yu, S.B., 1990. Vertical crustal movements in eastern Taiwan and their tectonic implications. Tectonophysics, 183(1-4), 111-119.
    Liu, C.S., Liu, S.Y., Lallemend, S.E., Lundberg, N., and Reed, D.L., 1998. Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 705-738.
    Lo, C.H., Onstott, T.C., Chen, C.H., and Lee, T., 1994. An assessment of 40Ar/39Ar dating for the whole-rock volcanic samples from the Luzon Arc near Taiwan. Chemical Geology, 114(1-2), 157-178.
    Lo, Y.C., Chen, C.T., Lo, C.H., and Chung, S.L., 2020. Ages of ophiolitic rocks along plate suture in Taiwan orogen: Fate of the South China Sea from subduction to collision. Terrestrial, Atmospheric and Oceanic sciences, 31(4), 383-402.
    Malavieille, J., Molli, G., Genti, M., Dominguez, S., Beyssac, O., Taboada, A., Vitale- Brovarone, A., Lu, C. Y., and Chen, C. T., 2016. Formation of ophiolite-bearing tectono- sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analog models and case studies. Journal of Geodynamics, 100, 87-103.
    Martin, V. M., Pyle, D. M., and Holness, M. B., 2006. The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth and Planetary Science Letters, 248(3-4), 787-799.
    Maury, R. C, Didier, J., and Lameyre, J., 1978. Comparative magma/xenolith relationships in some volcanic and plutonic rocks from the French. Massif Central. Contributions to Mineralogy and Petrology, 66, 401-408.
    Moores, E. M., 1982. Origin and Emplacement of Ophiolite. Reviews of Geophysics, 20(4), 735-760.
    Morgavi D., Perugini, D., De Campos, C. P., Ertl-Ingrisch, W., and Dingwell, D. B., 2013. Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contributions to Mineralogy and Petrology, 166, 615-638.
    Miyashiro, A., 1975. Classification, characteristics, and origin of ophiolites. The Journal of Geology, 83(2), 249-281.
    Nicolas, A., 1989. Xigaze and Trinity ophiolites-plagioclase lherzolite massifs: the lherzolite ophiolite type. In: Nicolas, A. (eds), Structures of Ophiolites and Dynamic of Oceanic Lithosphere. Kluwer, Dordrecht, pp. 91-105.
    Pearce, J. A., 2003. Supra-subduction zone ophiolites: The search for modern analogues, In: Dilek, Y., and Newcomb, S. (eds), Ophiolite Concept and the Evolution of Geological Thought: Geological Society of America Special Paper, 373, 269–293.
    Plail, M., Edmonds, M., Woods, A. W., Barclay, J., Humphreys, M. C., Herd, R. A., and Christopher, T., 2018. Mafic enclaves record syn‐eruptive basalt intrusion and mixing. Earth and Planetary Science Letters, 484, 3040.
    Richard, M., Bellon, H., Maury, R.C., Barrier, E., and Juang, W.S., 1986. Miocene to recent calc-alkaline volcanism in eastern Taiwan: K-Ar ages and petrography. Tectonophysics, 125(1-3), 87-102.
    Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian Plate. Tectonophysics, 42(2-4), 209-226.
    Seno, T., Stein, S., and Gripp, A.E., 1993. A model for the Motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941-17948.
    Shen, W., and Lin, H., 2002. Isotope studies of basement metamorphic, granitic and volcanic rocks in SE China and its crust evolution. In: Wang, D., and Zhou, X. (eds.), Genesis of Late Mesozoic Granitic Volcanic–Plutonic Complexes in SE China and Crustal Evolution. Science Press, Beijing, 230-272 (in Chinese).
    Song, S.R., and Lo, H.J., 1990. Stratigraphy of volcanics and related rocks in the Coastal Range, eastern Taiwan. Special Publication of Central Geological Survey, 4, 261-270. (In Chinese with English Abstract.)
    Song, S. R., and Lo, H.J., 2002. Lithofacies of volcanic rocks in the central Coastal Range, eastern Taiwan: implications for island arc evolution. Journal of Southeast Asian Earth Sciences, 21(1), 23-38.
    Taylor, B., and Hayes, D.E., 1983. Origin and history of the south China basin. In: Hayes, D.E. (eds), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 2. Geophysical Monograph, American Geophysical Union's, 27, 89-104.
    Teng, L.S., 1979. Petrographical study of the Neogene Sandstones of the Coastal Range, eastern Taiwan (1) - Northern part. Acta Geologica Taiwanica, 20, 129-155.
    Teng, L.S., and Lo, H.J., 1985. Sedimentary sequences in the island arc setting of the Coastal Range, eastern Taiwan. Acta Geologica Taiwanica, 23, 77-98.
    Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc–continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Tsai, Y.B., Hsiung, Y.M., Liaw, H.B., Lueng, H.P., Yao, T.H., Yeh, Y.H., and Yeh, Y.T., 1974. A seismic refraction study of eastern Taiwan. Petroleum Geology of Taiwan, 11, 165-182.
    Wang, T.K., and Chinag, C.H., 1998. Imaging of arc-arc collision in the Ryukyu forearc region offshore Hualien from TAICRUST OBS line 16, Terrestrial, Atmospheric, and Oceanic Sciences, 9(3), 329-344.
    Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., S.Y.O, Reilly., Xu, X. S., Liu, X.M., and Zhang, G.L., 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen, dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2), 117-131.
    Yang, T.Y., T.K. Liu and Chen, C.H., 1988. Thermal event records of the Chimei Igneous Complex: constraints on the age of magma activities and the structural implication based on fission track dating. Acta Geological Taiwan, 26, 236-246.
    Yang, T.F., Tein, J.L., Chen, C.H., Lee, T., and Punongbayan, R. S., 1995. Fission-track dating of volcanic in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination. Journal of Asian Earth Sciences, 11(2), 81-93.
    Yu, S.B., Chen, H.Y., and Kuo, L.C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
    Yu, S.B., and Kuo, L.C., 2001. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.

    下載圖示
    QR CODE