簡易檢索 / 詳目顯示

研究生: 柯盟威
M. W. KE
論文名稱: 公路長隧道內交通事件偵測
Traffic Incident Detection in Long Highway Tunnel
指導教授: 葉榮木
Yeh, Zong-Mu
蔡俊明
Tsai, Chun-Ming
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 長隧道影像處理時空域分析交通資訊移動物件偵測
英文關鍵詞: Long tunnel, Image Processing, Temporal-Spatial analysis, Traffic information, Moving object detection
論文種類: 學術論文
相關次數: 點閱:460下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工程及科技的發展迅速,開啟了長隧道時代的來臨;然而,隧道內的交通資訊取得、事故處理以及逃生系統,遠比在一般開放空間快速道路搶救,難上幾十甚至幾百倍。因此,一般用路人對於長隧道的特殊交通空間,並未有完善的知識以及交通資訊。若能在事故發生前做事故預防的警示,以及隧道內即時交通資訊的指示,成為交通順暢與否及避免危機的重要課題。
    本研究目的,在於以影像處理達成(1)估測隧道內交通資訊(2)車輛變換車道偵測(3)故障停等車輛偵測(4)長隧道內火焰偵測。如果能在事故發生前、後,透過資訊可變標誌,給予適時、適當的預警,不但能降低事故的發生,更能大量節省事故發生後,緊急處理所需的時間,而使行車更加順暢。
    本研究以公路長隧道內,雙白線資訊為偵測基礎,並(1)設定行車車輛數目,估測行車流量(2)當偵測出之車輛與雙白線直線方程式產生交集時,偵測出車輛跨越雙白線(3)以時空域動量分析偵測出車輛故障停等(4)基於公路長隧道標準照明下,分析火焰色彩資訊,進行火焰偵測。
    實驗結果顯示,在各項交通事件偵測,準確率皆在九成以上;並且,在長隧道行車中,具備最低速限以及標準照明環境之下,本研究提出(1)以時空域動量分析演算法,偵測車輛故障停等,以及(2)利用色彩空間,偵測火焰區域,以八卦山隧道交通事件為例,進行偵測,所偵測之時間,分別較目前既有影像式事件偵測方式,更為提早1秒與2.6秒。如此便能更即時的通報給行控中心,作適當之處置。

    The rapid development of engineering and technology creates the possibility of traffic flow through long tunnels. However, to obtain the traffic information and incident handling and escape systems in the tunnel, are more difficult than open space in the general highway, hard on a few times, even several hundred times. Therefore, the common user for the special transport space in long tunnel, there is no perfect knowledge, and traffic information. If accident prevention alerts was done before the accident, and really time of traffic information in the tunnel, has become an important issue for a smooth traffic flow or not.
    The purpose of this study is using image processing to achieve (1) estimation the traffic information in tunnel, (2) the vehicle spanning double white line detection, (3) the failure and stopped vehicle detection (4) fire detection in long tunnel. Before the accident occurred and after, the appropriate warning signal through the CMS (Changeable Message Sign)with timely, not only can reduce accidents but saving more times in the emergency treatment after the accidents, to make driving more smoothly.
    In this study, we used the Double White Line information in long highway tunnel to (1) set a number of vehicles and estimating the traffic volume, (2) detect the vehicle spanning Double White Line while the vehicle intersects with the Double White Line, (3) detect the vehicle failure by using the Temporal-Spatial momentum algorithm, (4) detect flame by analyzing its color space, based on standard long highway tunnel lighting.
    As the experimental results, our accuracy of the detection is upper than ninety percentage in each incident detection. And, the traffic with a minimum speed limit as well as standard lighting brightness of the environment in long tunnel, the proposed of (1) temporal-Spatial momentum algorithm to detect the failure and stopped vehicle, and (2) color space used to detect the flame region, to detect traffic incident in the Pakuashan tunnel, the experimental results is earlier 1 second, and 2.6 seconds than the existing image detection methods.

    致謝......................................................................................................................I 摘要.....................................................................................................................II Abstract..............................................................................................................III 目錄...................................................................................................................IV 圖目錄...............................................................................................................VI 表目錄...............................................................................................................IX 第一章 緒論.......................................................................................................1 1-1 前言......................................................................................................1 1-2 研究背景..............................................................................................3 1-3 研究動機...............................................................................................6 1-4 研究目的...............................................................................................8 1-5 論文架構.............................................................................................10 第二章 相關研究.............................................................................................11 2-1 相關基本理論....................................................................................11 2-1-1 色彩空間...................................................................................11 2-1-2 彩色影像轉灰階影像...............................................................14 2-1-3 灰階影像二值化.......................................................................15 2-1-4 影像濾波器...............................................................................17 2-1-5 形態學.......................................................................................19 2-1-6 連通物件標籤...........................................................................26 2-2 相關文獻............................................................................................27 2-2-1 移動物件偵測...........................................................................27 2-2-2 文獻探討...................................................................................31 2-2-3 綜合討論...................................................................................37 第三章 影像式事件偵測系統.......................................................................42 3-1 系統功能與架構................................................................................42 3-2 雙白線偵測........................................................................................43 3-3 移動物件偵測....................................................................................45 3-4 車流量估測........................................................................................48 3-5 車輛跨越雙白線偵測........................................................................50 3-6 車輛故障停等偵測............................................................................52 3-7 火焰偵測............................................................................................54 第四章 實驗結果與討論.................................................................................57 4-1 交通流量估測....................................................................................58 4-2車輛跨越雙白線偵測.........................................................................60 4-3 車輛故障停等偵測............................................................................66 4-4 火焰偵測............................................................................................70 4-5 綜合分析與討論................................................................................72 4-5-1 本研究提出各項交通事件偵測之偵測率...............................72 4-5-2 交通事件偵測效能比較...........................................................77 4-5-3 綜合討論...................................................................................79 第五章 結論與未來展望.................................................................................80 參考文獻...........................................................................................................81

    [1] 吳玉珍、李霞、洪銘揚、曹瑞和,「國內研發影像式車輛偵測器之後需擴充」,交通部運輸研究所,2009。
    [2] 「長隧道主題網」 http://168.motc.gov.tw/GIPSite/wSite/mp?mp=6,最後點閱日期2010/03/09。
    [3] 許添本、林楷閔,「事件干擾火商指標之建立分析」,中華民國運輸學會, pp. 1007-1030, 2009。
    [4] 陳子敬,「參 訪 法 國 至 義 大 利 白 朗 峰 (Mont Blanc) 和瑞士聖哥達(St.Gotthard)長隧道之交通管理報告」,出國報告, 2006。
    [5] 王泰堅、謝哲雄,「八卦山隧道新增影像式事件自動偵測系統營運評估」,台灣公路工程, vol.35, pp.2-22, 2009。
    [6] 「八卦山隧道民國96年7月13日15時事故影片片段」 (交通部公路總局第二養護工程處員林工務段提供)。
    [7] 高邦基、謝哲雄、常書娟,「台76 線八卦山隧道第一階段通車之營運管理」,台灣公路工程,vol. 32, pp.30-54, 2006。
    [8] 張世忠,「東西向快速公路漢寶草屯線 E407-2 標八卦山隧道機電與安全系統概述」,台灣公路工程, vol.30, pp.27-38, 2003。
    [9] R. C. Gonzales, R. E. Woods, “Digital Image Processing ”, Princeton Inc.2007.
    [10] N. Otsu, “A Threshold Selection Method from gray-level Histograms”, IEEE International Conference on System, vol. 9, pp. 62–66, 1979.
    [11] 賴岱佑,「數位影像分析之智慧型監視系統」,台灣文魁資訊股份有限公司,2009。
    [12] K. A. Patwardhan, G. Sapiro, and V. Morellas, “Robust foreground detection in video using pixel layer”, IEEE transactions on pattern analysis and machine intelligence, vol. 30, pp. 746-751, April 2008.
    [13] H. L. Eng, K. A. Toh, and W. Y. Yan, “DEWS: A live visual surveillance system for early drowning detection at pool”, IEEE transactions on circuits and system for video technology, vol. 18, pp. 196-210, February 2008.
    [14] E. J. Carmona, J. M. Cantos, and J. Mira, “A new video segmentation method of moving objects based on blob-level knowledge”, Pattern Recognition Letters, vol. 29, pp. 272-285, 2008.
    [15] 邱建中,「利用時空域分析與背景相減法作視訊移動物偵測」,碩士論文, 國立臺灣師範大學機電科技學系, 2009。
    [16] L. W. Tsai, J. W. Hsien, and K. C. Fan, “Vehicle detection using normalized color and edge map”, IEEE transactions on image processing, vol. 16, pp. 850-864, March 2007.
    [17] 洪順煌,「即時影像之交通資訊偵測系統研究」,碩士論文, 國防大學中正理工學院電子工程研究所, 2007。
    [18] J. C. Tai, S.T. Tseng, C. P. Lin, and K. T. Song, “Real-time image tracking for automatic traffic monitoring and enforcement applications”, Image and Vision computing, vol. 22, pp. 485-501, 2004.
    [19] 吳炳飛,「影像式車輛/事件偵測器成果介紹」,交通部運輸研究所,2009。[20] 周胤德、忻元發、張世忠,「從近年國內外之重大公路長隧道事故探討隧道營運管理安全設施策略」,台灣公路工程, vol. 30, pp.2-13, 2004。
    [21] D. Han, B. Lee, “Flame and smoke detection method for early real-time detection of a tunnel fire”, Fire Safety Journal, vol. 44, pp. 951-961, 2009.
    [22] T. Celik, H. Demirel, H. Ozkaramanli, M. Uyguroglu, “Fire detection using statistical color model in video sequences”, Journal of Visual Communication and Image Representation, vol. 18, pp. 176-185, 2007.
    [23] T. Celik, H. Demirel, “Fire detection in video sequences using a generic color model”, Fire Safety Journal, vol. 44, pp. 147-158, 2009.
    [24] S. J. Wang, M. T. Tsai, Y. K. Ho, C. C. Chiang, “Video-Based Early Flame Detection for Vessels by Using the Fuzzy Color Clustering Algorithm”, The International Computers Symposium, pp.1179-1184, 2006.
    [25] S. J. Wang, D. L. Jeng, M. T. Tsai, “Early fire detection method in video for vessels”, The Journal of Systems and Software, pp.656-667, 2009.
    [26] ISS-Autoscope, (http://autoscope.com/)
    [27] Citilog, (http://www.citilog.com/)
    [28] Traficon, (http://www.traficon.com/)
    [29] 邱建明,「結合影像與文字辨識的網路色情過濾」,碩士論文,國立中央大學資訊工程研究所,2004 。
    [30] 「東西向快速公路漢寶草屯線-八卦山隧道即時影像」, http://61.60.112.228/map-02.htm ,最後點閱日期2010/03/09。
    [31] 高政良,「具火災偵測之追蹤式數位錄影系統之研究」,碩士論文, 南台科技大學電子工程研究所,2002。
    [32] B. U. To¨ reyin, Y. Dedeogˇlu, U. Gu¨du¨kbay, A.E. Cetin, “Computer vision based method for real-time fire and flame detection”, Pattern Recognition Letters, vol. 27, pp. 49-58, 2006.
    [33] 「板橋光復國小周邊道路」,自行錄製影像,錄製日期2010/07。
    [34] 「新店交流道-中興路出口-地下道」,自行錄製影像,錄製日期2010/07。

    下載圖示
    QR CODE