研究生: |
吳宜庭 Wu, I-Ting |
---|---|
論文名稱: |
以社群網站探勘、優勢約略集合與形式概念分析預測加密貨幣價格波動 Predicting Price Fluctuation of Cryptocurrency Using Social Media Mining, Dominance based Rough Set Approach and Formal Concept Analysis |
指導教授: |
黃啟祐
Huang, Chi-Yo |
口試委員: |
羅乃維
Lo, Nai-Wei 黃日鉦 HUANG, JIH-JENG 黃啟祐 HUANG, Chi-Yo |
口試日期: | 2023/07/21 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系科技應用管理碩士在職專班 Department of Industrial Education_Continuing Education Master's Program of Technological Management |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 社群媒體 、加密貨幣 、情感分析 、k-平均演算法 、優勢約略集合 、形式概念分析 |
英文關鍵詞: | Social Media, Cryptocurrency, Sentiment Analysis, k-means clustering, Dominance based Rough Set, Formal Concept Analysis |
研究方法: | 次級資料分析 、 情感分析 、 k-平均演算法 、 優勢約略集合 、 形式概念分析 |
DOI URL: | http://doi.org/10.6345/NTNU202301413 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著加密貨幣的問世與日益普及,使用與投資加密貨幣,已成為新的趨勢。但因虛擬貨幣價格的高波動性,投資風險極高,如何精確預測虛擬貨幣價格,非常值得關注。社群媒體的問世與普及,改變了大部份使用者交換資訊的方式。人們除了使用搜尋引擎之外,也可以透過Facebook或Twitter等平台,張貼或搜尋他人的意見與評論。因此,社群媒體上的大量留言,成為大數據分析之標的,對加密貨幣之分析亦然。之前常見社群媒體言論對股票市場之影響分析及預測,但虛擬貨幣為新型態之投資標的,社群媒體言論對比特幣值漲跌幅之衝擊,較少學者著墨。
因此本研究擬爬取主要社群媒體之關於加密貨幣之推文,進行文本情感分析,並且同步爬取具代表性之個體經濟與總體經濟指數,將數據一般化(Normalization)之後,使用k-平均群落分析法(k-means cluster analysis)將每一變數分群,再導入優勢約略集合(Dominance Rough Set Approach, DRSA)及形式概念分析(Formal Concept Analysis, FCA),推衍社群網路之正、負向言論、各種經濟指數與虛擬貨幣幣值漲跌幅間的「若…則…」(if precedent then descendant)推論關係(inference relationship),建構加密貨幣價格之預測模型。
為驗證分析架構之可行性,本研究爬取虛擬貨幣相關意見領袖於Twitter發表之推文、Google聲量、與影響加密貨幣價格之經濟指標,導入分析架構後,推衍預測關係。依據實證研究結果,影響比特幣價格的重要因素有比特幣交易量、黃金價格及交易量、美國股票指數、匯率、通貨膨脹率,以及Google聲量,若特定條件成立,則比特幣價格會大幅上漲或下跌;而Google聲量在投資者做出投資決策時扮演重要角色,輿論可能不會對比特幣價格的即時波動產生影響,但以整個時間序列來看,卻確切對其產生重大的影響。本研究結果可作為比特幣投資人之依據,建構之分析架構,亦可作為預測其他金融商品之用。
With the advent and increasing popularity of cryptocurrencies, the use and investment of cryptocurrencies has become a new trend. However, due to the high volatility of virtual currency prices, the investment risk is extremely high. How to accurately predict virtual currency prices is of great concern. The advent and popularity of social media has changed the way most users exchange information. In addition to using search engines, people can also post or search for other people's opinions and comments through platforms such as Facebook or Twitter. Therefore, the large number of comments on social media has become the target of big data analysis, as well as for the analysis of cryptocurrencies. Previously, there were common analyses and predictions of the impact of social media comments on the stock market, but virtual currencies are a new type of investment target, and there are few scholars who have studied the impact of social media comments on the rise and fall of Bitcoin values.
Therefore, this research intends to crawl tweets about cryptocurrencies from major social media platforms, conduct text sentiment analysis, and simultaneously crawl representative individual economic and macroeconomic indicators. After normalizing the data, use k-means cluster analysis to cluster each variable, and then introduce Dominance Rough Set Approach (DRSA) and Formal Concept Analysis (FCA) to derive the "if precedent then descendant" inference relationship between positive and negative comments on social networks, various economic indicators and virtual currency value fluctuations, and construct a prediction model for cryptocurrency prices.
In order to verify the feasibility of the analysis framework, this research crawls tweets published by opinion leaders related to virtual currencies on Twitter, Google volume, and economic indicators that affect cryptocurrency prices, introduces them into the analysis framework, and derives predictive relationships. According to empirical research results, important factors affecting Bitcoin prices include Bitcoin trading volume, gold price and trading volume, US stock index, exchange rate, inflation rate, and Google volume. If specific conditions are met, Bitcoin prices will rise or fall sharply; Google volume plays an important role when investors make investment decisions. Public opinion may not have an impact on the instantaneous fluctuations of Bitcoin price, but over the entire time series, it does have a significant effect on it. The results of this research can be used as a basis for Bitcoin investors. The constructed analysis framework can also be used to predict other financial products.
Aalborg, H. A., Molnár, P., & de Vries, J. E. (2019). What can explain the price, volatility and trading volume of Bitcoin?. Finance Research Letters, 29, 255-265.
Abastante, F., Bottero, M., Greco, S., & Lami, I. (2014). Addressing the location of undesirable facilities through the dominance‐based rough set approach. Journal of Multi‐Criteria Decision Analysis, 21(1-2), 3-23.
Abheey. (2023). S&P 500 companies (updated list 2023). Finasko. Retrieved from https://finasko.com/sp-500-companies/. Accessed on June 20, 2023.
Abirami, A. M., & Gayathri, V. (2017, January). A survey on sentiment analysis methods and approach. In 2016 Eighth International Conference on Advanced Computing (ICoAC) (pp. 72-76). IEEE.
Aboura, S. (2022). A note on the Bitcoin and fed funds rate. Empirical Economics, 63(5), 2577-2603.
Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Science Review, 1(3), 1-21.
Acharjya, D. P., & Ahmed, N. S. S. (2021). Tracing of online assaults in 5G networks using dominance based rough set and formal concept analysis. Peer-to-Peer Networking and Applications, 14(1), 349-374.
Agarwal, J., Nagpal, R., & Sehgal, R. (2013). Crime analysis using k-means clustering. International Journal of Computer Applications, 83(4), 1-4.
Aichner, T., Grünfelder, M., Maurer, O., & Jegeni, D. (2021). Twenty-five years of social media: a review of social media applications and definitions from 1994 to 2019. Cyberpsychology, behavior, and social networking, 24(4), 215-222.
Akyildirim, E., Aysan, A. F., Cepni, O., & Darendeli, S. P. C. (2021). Do investor sentiments drive cryptocurrency prices?. Economics Letters, 206, 1-6.
Ali, A., Ali, M. I., & Rehman, N. (2019). Soft dominance based rough sets with applications in information systems. International Journal of Approximate Reasoning, 113, 171-195.
Anamika, Chakraborty, M., & Subramaniam, S. (2021). Does sentiment impact cryptocurrency?. Journal of Behavioral Finance, 1-17.
Ángeles López-Cabarcos, M., M Pérez-Pico, A., & López Perez, M. L. (2020). Investor sentiment in the theoretical field of behavioural finance. Economic research-Ekonomska istraživanja, 33(1), 2101-2228.
Ante, L. (2023). How Elon Musk's twitter activity moves cryptocurrency markets. Technological Forecasting and Social Change, 186, 1-14.
Artemov, N. M., Arzumanova, L. L., Sitnik, A. A., & Zenin, S. S. (2017). Regulation and control of virtual currency: to be or not to be. Journal of Advanced Research in Law and Economics, 8(5 (27)), 1428-1435.
Arthur, D., & Vassilvitskii, S. (2006, June). How slow is the k-means method?. In Proceedings of the twenty-second annual symposium on Computational geometry (pp. 144-153).
Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., ... & Belyaeva, J. (2013). Sentiment analysis in the news. arXiv preprint arXiv:1309.6202.
Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R., & Szela̧g, M. (2013). jMAF-Dominance-based rough set data analysis framework. Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam: Volume 1, 185-209.
Blau, B. M., Griffith, T. G., & Whitby, R. J. (2021). Inflation and Bitcoin: a descriptive time-series analysis. Economics Letters, 203, 1-5.
Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2018). Spillovers between Bitcoin and other assets during bear and bull markets. Applied Economics, 50(55), 5935-5949.
Bouri, E., Gupta, R., Lahiani, A., & Shahbaz, M. (2018). Testing for asymmetric nonlinear short-and long-run relationships between bitcoin, aggregate commodity and gold prices. Resources Policy, 57, 224-235.
Brian Solis. (2015). 25 Technology Trends for 2015 - 2016. Retrieved from https://www.linkedin.com/pulse/25-technology-trends-2015-2016-brian-solis/
Cao, G., & Ling, M. (2022). Asymmetry and conduction direction of the interdependent structure between cryptocurrency and US dollar, renminbi, and gold markets. Chaos, Solitons & Fractals, 155, 111671.
Carr, C. T., & Hayes, R. A. (2015). Social media: defining, developing, and divining. Atlantic journal of communication, 23(1), 46-65.
Charfeddine, L., Benlagha, N., & Maouchi, Y. (2020). Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors. Economic Modelling, 85, 198-217.
Chohan, U. W. (2021). Non-fungible tokens: Blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers.
Chowdhury, R., Rahman, M. A., Rahman, M. S., & Mahdy, M. R. C. (2020). An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning. Physica A: Statistical Mechanics and its Applications, 551, 1-17.
CNBC. (2021, May 7). Goldman Sachs unveils new cryptocurrency trading team in employee memo. Retrieved from https://www.cnbc.com/2021/05/07/goldman-sachs-unveils-new-cryptocurrency-trading-team-in-employee-memo.html
Coincub.com. (2022). Q2 2022 Global Crypto Ranking: Germany goes head to head with the USA. Retrieved from https://coincub.com/ranking/the-coincub-q2-global-crypto-ranking-categories-2022/
Conlon, T., Corbet, S., & McGee, R. J. (2021). Inflation and cryptocurrencies revisited: a time-scale analysis. Economics Letters, 206, 1-5.
Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. Journal of Risk and Financial Management, 11(2), 23-34.
Corbet, S., Hou, Y. G., Hu, Y., Larkin, C., & Oxley, L. (2020). Any port in a storm: cryptocurrency safe-havens during the COVID-19 pandemic. Economics Letters, 194, 1-7.
Corbet, S., Larkin, C., & Lucey, B. (2020). The contagion effects of the COVID-19 pandemic: evidence from gold and cryptocurrencies. Finance Research Letters, 35, 1-7.
Crypto.com. (2021). Measuring Global Crypto Users – A Study to Measure Market Size Using On-Chain Metrics. Retrieved from https://crypto.com/images/202107_DataReport_OnChain_Market_Sizing.pdf
D’Aniello, G., Gaeta, M., & La Rocca, I. (2022). KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artificial Intelligence Review, 55(7), 5543-5574.
DBS. (2021, May 14). DBS Private Bank launches trust solution for cryptocurrencies. Retrieved from https://www.dbs.com/newsroom/DBS_Private_Bank_launches_trust_solution_for_cryptocurrencies
Demir, E., Bilgin, M. H., Karabulut, G., & Doker, A. C. (2020). The relationship between cryptocurrencies and COVID-19 pandemic. Eurasian Economic Review, 10, 349-360.
Denecke, K. (2008, April). Using sentiwordnet for multilingual sentiment analysis. In 2008 IEEE 24th international conference on data engineering workshop (pp. 507-512). IEEE.
El Montasser, G., Charfeddine, L., & Benhamed, A. (2022). COVID-19, cryptocurrencies bubbles and digital market efficiency: sensitivity and similarity analysis. Finance Research Letters, 46, 1-9.
Federal Reserve. (2022, February 18). Preparing for the Financial System of the Future. Retrieved from https://www.federalreserve.gov/newsevents/speech/brainard20220218a.htm
Ftiti, Z., Louhichi, W., & Ben Ameur, H. (2021). Cryptocurrency volatility forecasting: what can we learn from the first wave of the COVID-19 outbreak?. Annals of Operations Research, 1-26.
Gemici, E., & Polat, M. (2019). Relationship between price and volume in the Bitcoin market. The Journal of Risk Finance, 20(5), 435-444.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. California: O'Reilly Media, Inc..
Greco, S., Matarazzo, B., & Slowinski, R. (1999). Rough approximation of a preference relation by dominance relations. European Journal of operational research, 117(1), 63-83.
Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European journal of operational research, 129(1), 1-47.
Gurdgiev, C., & O’Loughlin, D. (2020). Herding and anchoring in cryptocurrency markets: Investor reaction to fear and uncertainty. Journal of Behavioral and Experimental Finance, 25, 1-10.
Hamza, S. (2020). The effect of tweets made by cryptocurrency opinion leaders on Bitcoin prices. Saudi Journal of Economics and Finance, 4(12), 569-589.
Hrazdil, K. (2007). Essay on the S&P 500 index inclusion effect: empirical evidence. Edmonton, Canada: University of Alberta.
Huang, X., Zhang, W., Tang, X., Zhang, M., Surbiryala, J., Iosifidis, V., ... & Zhang, J. (2021). Lstm based sentiment analysis for cryptocurrency prediction. In Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part III 26 (pp. 617-621). Springer International Publishing.
Hughes, S. D. (2017). Cryptocurrency Regulations and Enforcement in the US. W. St. UL Rev., 45, 1.
Inamdar, A., Bhagtani, A., Bhatt, S., & Shetty, P. M. (2019, May). Predicting cryptocurrency value using sentiment analysis. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS) (pp. 932-934). IEEE.
Inuiguchi, M., Yoshioka, Y., & Kusunoki, Y. (2009). Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning, 50(8), 1199-1214.
Jakub, B. (2015). Does Bitcoin follow the hypothesis of efficient market. International Journal of Economic Sciences, 4(2), 10-23.
Jalan, A., Matkovskyy, R., Urquhart, A., & Yarovaya, L. (2023). The role of interpersonal trust in cryptocurrency adoption. Journal of International Financial Markets, Institutions and Money, 83, 1-19.
Jansson, N. F., Allen, R. L., Skogsmo, G., & Tavakoli, S. (2022). Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden. Journal of Geochemical Exploration, 233, 1-26.
Ji, Q., Li, J., & Sun, X. (2019). Measuring the interdependence between investor sentiment and crude oil returns: new evidence from the CFTC's disaggregated reports. Finance Research Letters, 30, 420-425.
Jiang, Y., Lie, J., Wang, J., & Mu, J. (2021). Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective. Economic Modelling, 95, 21-34.
Kaplan, A. M. (2015). Social media, the digital revolution, and the business of media. International Journal on Media Management, 17(4), 197-199.
Kim, J. M., Kim, S. T., & Kim, S. (2020). On the relationship of cryptocurrency price with us stock and gold price using copula models. Mathematics, 8(11), 1859-1863.
Kim, K., Lee, S. Y. T., & Assar, S. (2022). The dynamics of cryptocurrency market behavior: sentiment analysis using Markov chains. Industrial Management & Data Systems, 122(2), 365-395.
Kovner, A., & Skeie, D. R. (2013). Evaluating the quality of fed funds lending estimates produced from Fedwire payments data. FRB of New York Staff Report, (629).
Kraaijeveld, O., & De Smedt, J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 1-22.
Lamon, C., Nielsen, E., & Redondo, E. (2017). Cryptocurrency price prediction using news and social media sentiment. SMU Data Sci. Rev, 1(3), 1-22.
Li, S., Li, T., & Liu, D. (2013). Dynamic maintenance of approximations in dominance‐based rough set approach under the variation of the object set. International Journal of Intelligent Systems, 28(8), 729-751.
Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2), 451-461.
Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics, 10(3), 287-302.
Malladi, R. K., & Dheeriya, P. L. (2021). Time series analysis of cryptocurrency returns and volatilities. Journal of Economics and Finance, 45(1), 75-94.
Mariana, C. D., Ekaputra, I. A., & Husodo, Z. A. (2021). Are Bitcoin and Ethereum safe-havens for stocks during the COVID-19 pandemic? Finance research letters, 38, 1-7.
Marin, J. C., Zaras, K., & Boudreau-Trudel, B. (2014). Use of the dominance-based rough set approach as a decision aid tool for the selection of development projects in Northern Quebec. Modern Economy, 5, 723-741.
McGurk, Z., Nowak, A., & Hall, J. C. (2020). Stock returns and investor sentiment: textual analysis and social media. Journal of Economics and Finance, 44, 458-485.
M. Meilă. The uniqueness of a good optimum for k-means. In ICML, 2006.
Mikhaylov, A. (2020). Cryptocurrency market analysis from the open innovation perspective. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 197-215.
Milosh, D. V., & Gerasenko, V. P. (2020). Digital of financial assets: current state and forecast of development at the global level on the example of cryptocurrencies. Корпоративное управление и инновационное развитие экономики Севера: Вестник Научно-исследовательского центра корпоративного права, управления и венчурного инвестирования Сыктывкарского государственного университета, (4), 98-107.
Mittal, A., Dhiman, V., Singh, A., & Prakash, C. (2019). Short-term bitcoin price fluctuation prediction using social media and web search data. In 2019 Twelfth International Conference on Contemporary Computing (IC3), IEEE, pp. 1–6.
Mnif, E., Jarboui, A., & Mouakhar, K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Finance research letters, 36, 1-14.
Molling, G., Klein, A., Hoppen, N., & Rosa, R. D. (2020). Cryptocurrency: a mine of controversies. JISTEM-Journal of Information Systems and Technology Management, 17, 1-15.
Mull, I. R., & Lee, S. E. (2014). “PIN” pointing the motivational dimensions behind Pinterest. Computers in Human Behavior, 33, 192-200.
Murphy, Edward V., M. Maureen Murphy, and Michael V. Seitzinger. 2015. Bitcoin: Questions, Answers, and Analysis of Legal Issues; Washington, DC: Congressional Research Service.
Musarat, M. A., Alaloul, W. S., & Liew, M. S. (2021). Impact of inflation rate on construction projects budget: A review. Ain Shams Engineering Journal, 12(1), 407-414.
Naeem, M. A., Mbarki, I., & Shahzad, S. J. H. (2021). Predictive role of online investor sentiment for cryptocurrency market: evidence from happiness and fears. International Review of Economics & Finance, 73, 496-514.
Naeem, M. A., Mbarki, I., Suleman, M. T., Vo, X. V., & Shahzad, S. J. H. (2021). Does Twitter happiness sentiment predict cryptocurrency?. International Review of Finance, 21(4), 1529-1538.
Nakagawa, K., & Sakemoto, R. (2022). Cryptocurrency network factors and gold. Finance Research Letters, 46, 1-6.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81-99.
Nanli, Z., Ping, Z., Weiguo, L. I., & Meng, C. (2012, November). Sentiment analysis: A literature review. In 2012 International Symposium on Management of Technology (ISMOT) (pp. 572-576). IEEE.
Nedyalkova, M., Madurga, S., & Simeonov, V. (2021). Combinatorial k-means clustering as a machine learning tool applied to diabetes mellitus type 2. International Journal of Environmental Research and Public Health, 18(4), 1919-1928.
NonFungible.com. (2021). Yearly NFT Market Report. Retrieved from https://nonfungible.com/reports/2021/en/yearly-nft-market-report
Nyakurukwa, K., & Seetharam, Y. (2023). The evolution of studies on social media sentiment in the stock market: Insights from bibliometric analysis. Scientific African, 1-11.
Obar, J. A., & Wildman, S. S. (2015). Social media definition and the governance challenge-an introduction to the special issue. Telecommunications policy, 39(9), 745-750.
Panagiotidis, T., Stengos, T., & Vravosinos, O. (2018). On the determinants of bitcoin returns: A LASSO approach. Finance Research Letters, 27, 235-240.
Pathak, S., & Kakkar, A. (2020). Cryptocurrency price prediction based on historical data and social media sentiment analysis. Innovations in Computer Science and Engineering: Proceedings of 7th ICICSE, 47-55.
Peters, M. A., Green, B., & Yang, H. (2022). Cryptocurrencies, China's sovereign digital currency (DCEP) and the US dollar system. Educational Philosophy and theory, 54(11), 1713-1719.
Petukhina, A., Trimborn, S., Härdle, W. K., & Elendner, H. (2021). Investing with cryptocurrencies–evaluating their potential for portfolio allocation strategies. Quantitative Finance, 21(11), 1825-1853.
Philippas, D., Rjiba, H., Guesmi, K., & Goutte, S. (2019). Media attention and Bitcoin prices. Finance Research Letters, 30, 37-43.
Phochanachan, P., Pirabun, N., Leurcharusmee, S., & Yamaka, W. (2022). Do Bitcoin and traditional financial assets act as an inflation hedge during stable and turbulent markets? evidence from high cryptocurrency adoption countries. Axioms, 11(7), 339-363.
Pokharel, J. K., Tetteh-Bator, E., & Tsokos, C. P. (2022). A Real Data-Driven Analytical Model to Predict Information Technology Sector Index Price of S&P 500. arXiv, 2209(10720), 1-18.
Poongodi, M., Nguyen, T. N., Hamdi, M., & Cengiz, K. (2021). Global cryptocurrency trend prediction using social media. Information Processing & Management, 58(6), 1-11.
Ramdani, B., Binsaif, A., & Boukrami, E. (2019). Business model innovation: a review and research agenda. New England Journal of Entrepreneurship , 22(2), 89-108.
Reuters. (2021, November 23). Citigroup to create 100 roles in digital asset push. Retrieved from https://www.reuters.com/markets/us/citigroup-create-100-roles-digital-asset-push-2021-11-23/
Sakiz, B. (2020). New Financial Technologies, Cryptocurrencies, Blockchain, and Challenges. In Handbook of Research on Creating Sustainable Value in the Global Economy (pp. 85-102). IGI Global.
Saksonova, S., & Kuzmina-Merlino, I. (2019). Cryptocurrency as an investment instrument in a modern financial market. Вестник Санкт-Петербургского университета. Экономика, 35(2), 269-282.
Schollmeier, R. (2001, August). A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. In Proceedings first international conference on peer-to-peer computing (pp. 101-102). IEEE.
Schönbrodt, F. D., Humberg, S., & Nestler, S. (2018). Testing similarity effects with dyadic response surface analysis. European Journal of Personality, 32(6), 627-641.
Shahzad, S. J. H., Anas, M., & Bouri, E. (2022). Price explosiveness in cryptocurrencies and Elon Musk's tweets. Finance Research Letters, 47, 102695, 1-11.
Shen, K. Y., & Tzeng, G. H. (2016). Combining DRSA decision-rules with FCA-based DANP evaluation for financial performance improvements. Technological and Economic Development of Economy, 22(5), 685-714.
Shen, K. Y., Hu, S. K., & Tzeng, G. H. (2017). Financial modeling and improvement planning for the life insurance industry by using a rough knowledge based hybrid MCDM model. Information Sciences, 375, 296-313.
Singh, P., & Dhiman, G. (2018). A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches. Journal of computational science, 27, 370-385.
Smales, L. A. (2022). Investor attention in cryptocurrency markets. International Review of Financial Analysis, 79, 1-17.
Smuts, N. (2019). What drives cryptocurrency prices? An investigation of google trends and telegram sentiment. ACM SIGMETRICS Performance Evaluation Review, 46(3), 131-134.
Studen, L., & Tiberius, V. (2020). Social media, quo vadis? prospective development and implications. Future Internet, 12(9), 146-167.
Stumme, G. (2009). Formal concept analysis. In Handbook on ontologies (pp. 177-199). Berlin, Heidelberg: Springer Berlin Heidelberg.
Sun, W., Dedahanov, A. T., Shin, H. Y., & Kim, K. S. (2020). Switching intention to crypto-currency market: Factors predisposing some individuals to risky investment. PloS one, 15(6), 1-16.
Turner, H. C., Lauer, J. A., Tran, B. X., Teerawattananon, Y., & Jit, M. (2019). Adjusting for inflation and currency changes within health economic studies. Value in Health, 22(9), 1026-1032.
Valencia, F., Gómez-Espinosa, A., & Valdés-Aguirre, B. (2019). Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy, 21(6), 589-600.
Vidal-Tomás, D. (2021). Transitions in the cryptocurrency market during the COVID-19 pandemic: a network analysis. Finance Research Letters, 43, 1-11.
Wang, G., Tang, Y., Xie, C., & Chen, S. (2019). Is bitcoin a safe haven or a hedging asset? Evidence from China. Journal of Management Science and Engineering, 4(3), 173-188.
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.
Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. Orderd Sets D Reidel 83: 314–339.
Wołk, K. (2020). Advanced social media sentiment analysis for short‐term cryptocurrency price prediction. Expert Systems, 37(2), 1-16.
Xiao, H., & Sun, Y. (2020). Forecasting the returns of cryptocurrency: a model averaging approach. Journal of Risk and Financial Management, 13(11), 278-292.
Xu, G., Meng, Y., Qiu, X., Yu, Z., & Wu, X. (2019). Sentiment analysis of comment texts based on BiLSTM. Ieee Access, 7, 51522-51532.
Yan, R., & Ghose, S. (2010). Forecast information and traditional retailer performance in a dual-channel competitive market. Journal of Business Research, 63(1), 77-83.
Yao, Y. Y., & Chen, Y. (2004, June). Rough set approximations in formal concept analysis. In IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS'04. (Vol. 1, pp. 73-78). IEEE.
Yin, L., Nie, J., & Han, L. (2021). Understanding cryptocurrency volatility: The role of oil market shocks. International Review of Economics & Finance, 72, 233-253.
Youssef, M. (2022). What drives herding behavior in the cryptocurrency market?. Journal of Behavioral Finance, 23(2), 230-239.
Zaras, K. (2004) Rough Approximation of a Preference Relation by a Multi-Attribute Stochastic Dominance for Deterministic, Stochastic and Fuzzy Evaluation Problems. European Journal of Operational Research, 159, 196-206. http://dx.doi.org/10.1016/S0377-2217(03)00391-6
Zhang, S., Zhou, X., Pan, H., & Jia, J. (2019). Cryptocurrency, confirmatory bias and news readability–evidence from the largest Chinese cryptocurrency exchange. Accounting & Finance, 58(5), 1445-1468.
Zhao, H., & Zhang, L. (2021). Financial literacy or investment experience: which is more influential in cryptocurrency investment? International Journal of Bank Marketing, 39(7), 1208-1226.