簡易檢索 / 詳目顯示

研究生: 蕭淳任
Hsiao, Chun-Jen
論文名稱: 利用組織學與分子生物學比較回聲定位蝙蝠和囓齒動物的聽覺構造
Histological and molecular biological comparisons of auditory structure between echolocation bats and rodents
指導教授: 吳忠信
Wu, Chung-Hsin
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 34
中文關鍵詞: 蝙蝠囓齒動物耳蝸大小核磁共振腦的大小
英文關鍵詞: rodents, Otoferlin
DOI URL: https://doi.org/10.6345/NTNU202204355
論文種類: 學術論文
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從演化的角度來看,每種動物的聽覺功能主要是有效處理關於通訊和聲音定向的生物相關訊息,雖然哺乳動物的聽覺系統基本架構大致上都相同,但回聲定位蝙蝠與囓齒類動物用於通訊的聲音則是相當不同,且回聲定位蝙蝠的聽覺系統必須要能夠有效地處理它們的物種特異性聲音及從障礙物或獵物反彈回來的微弱回聲,因此回聲定位蝙蝠與囓齒類動物的聽覺適應性可能有所差異。為此,本博士論文主要利用核磁共振圖像、組織化學技術,分析回聲定位蝙蝠與囓齒類動物在周邊聽覺器官(耳蝸)與中樞聽覺系統上的結構差異,並進一步利用分子生物學技術的西方墨點法,了解發聲與聽覺相關蛋白質(例如FOXP2, Otoferlin, Prestin)的表現量。本論文研究發現儘管所有這些動物物種有著相似的耳蝸結構,但是對於耳蝸的大小和螺旋數目各不相同,定頻-調頻蝙蝠(CF-FM蝙蝠)與調頻蝙蝠(FM蝙蝠)的耳蝸比囓齒類動物(大鼠和小鼠)具有較大體積的耳蝸和更多的螺旋數目,而CF-FM蝙蝠相較於FM蝙蝠與囓齒類動物,具有最大體積的耳蝸和最多的螺旋數目。探討中樞聽覺系統構造發現,CF-FM蝙蝠和FM蝙蝠的中腦(上丘和下丘)、小腦相較於囓齒類動物來得大,但在嗅球與大腦上則是剛好相反。進一步檢視腦組織的蛋白質表現量,結果發現不論是FOXP2或是Otoferlin的蛋白質表現量也是回聲定位蝙蝠比囓齒類動物高。綜觀上述實驗結果,比較CF-FM蝙蝠和FM蝙蝠的中腦(上丘和下丘)和小腦大小,以及FOXP2表現量和Otoferlin表現量,皆是以CF-FM蝙蝠為最大最高。本研究推測這些動物物種在耳蝸大小、耳蝸螺旋數目、大腦、中腦、小腦、嗅球、FOXP2表現量及Otoferlin表現量上的差異與這些動物的生物相關聲音、聲學特性及生物聲學行為有關。

    From the evolutionary perspective, the auditory perception of each animal species is built for effective processing of the biologically relevant signals used for communication and acoustically guided orientation. Although echolocation bats and other mammals share the basic design of auditory system for sound reception, those sound pulses used by echolocation bats for orientation and by rodents for communication are quite different. Conceivably, echolocation bats must be specialized to effectively process their species-specific sounds and the echo bound from the environment and targets. This PhD thesis examined the difference between the peripheral auditory organ “cochlea” and the central nervous system of these animal species by using magnetic resonance images, histological techniques and western blotting analysis. We reported that all these animal species share similar cochlear structure, but they vary in the cochlear size, cochlear turns. The bats using constant frequency-frequency modulated pulses (CF-FM bat) and frequency-modulated pulses (FM bat) for echolocation have larger cochlear size, more cochlear turns than those of the rodents (mouse and rats). Furthermore, the cochlear size, cochlear turns and Otoferlin expression of CF-FM bat are largest. In the central nervous system, we found that CF-FM bats and FM bats have larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain compared to those of rodents. Also, the CF-FM bats and FM bats have smaller volume of cerebrum and olfactory bulb but greater expression of Otoferlin and FOXP2 than those of rodents. In addition, CF-FM bats have larger cerebrum and greater expression of Otoferlin and FOXP2 than those of FM bats. We suggested that the difference in cochlear size, cochlear turns, brain structure size and protein expression is associated with their relevant sounds, acoustic behavior and foraging behavior of these animal species.

    TABLE OF CONTENTS I LIST OF FIGURES II 中文摘要 III ABSTRACT IV CHAPTER 1 Introduction 1 CHAPTER 2 Materials and methods 9 CHAPTER 3 Results 15 CHAPTER 4 Discussion 19 CHAPTER 5 Conclusion 25 REFERENCES 27

    Altringham J D (1996) Bats: Biology and Behaviour. New York: Oxford University Press.
    Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol A. 106:77-86.
    Casseday JH, Covey E (1995) Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In: Covey E, Hawkins HL, Port RF (eds) Neural representation of temporal patterns. New York: Plenum. pp 25-51.
    Covey E (2005) Neurobiological specializations in echolocating bats. Anat Rec Part A. 287:1103-1116.
    Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN, editors. Comparative Hearing: Mammals. New York: Springer Press. pp. 134-172.
    Ehret G (1989) Hearing in the mouse. In: Dooling RJ, Hulse SH, editors. The Comparative Psychology of audition: Perceiving Complex Sounds. Hillsdale: Lawrence Erlbaum Press. pp. 3-32.
    Fay RR (1988) Hearing in Vertebrates: a Psychophysics Databook. Winnetka: Hill-Fay Associates Press.
    Fernandez C, Schmidt RS (1963) THE OPOSSUM EAR AND EVOLUTION OF THE COILED COCHLEA. J Comp Neurol. 121:151-9.
    Fisher SE, Marcus GF (2006) The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics. 7:9-20.
    Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME (1998) Localisation of a gene implicated in a severe speech and language disorder. Nat Genet. 18(2):168-70.
    Gopnik M (1990) Genetic basis of grammar defect. Nature. 347(6288):26.
    Griffin DR (1958) Listening in the Dark. New Haven: Yale University Press.
    Habersetzer J, Storch G (1992) Cochlear size in extant chiroptera and middle eozene microchiropterans from Messel. Naturwissenschaften. 79:462-466.
    Helle E, Olsson M, Jenssen S (1976a) DDT and PCB levels and reproduction in ringed seal from the Bothnian Bay. Ambio. 5:188-189.
    Helle E, Olsson M, Jenssen S (1976b) PCB levels correlated with pathological changes in seal uteri. Ambio. 5:261-263.
    Henson MM, Henson OW Jr, Gewalt SL, Wilson JL, Johnson GA (1994) Imaging the cochlea by magnetic resonance microscopy. Hear Res. 75:75-80.
    Henson OW Jr (1970) The central nervous system. In: Wimsatt WA, editor. Biology of bats. New York and London: Academic Press. pp. 58-145.
    Henson OW Jr, Schuller G, Vater M (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinlophus rouxi and Pteronotus parnellii). J Comp Neurol. 157:587-597.
    Hsiao CJ, Jen PH, Wu CH (2015) The cochlear size of bats and rodents derived from MRI images and histology. Neuroreport. 26(8):478-82.
    Hu K, Li Y, Gu X, Lei H, Zhang S (2006) Brain structures of echolocating and nonecholocating bats, derived in vivo from magnetic resonance images. Neuroreport. 17:1743-1746.
    Huberman AD, Cristopher MN (2011) What can mice tell us about how vision works? TINS. 34:464-473.
    Hutcheon JM, Kirsch JA, Garland Jr T (2002) A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera. Brain Behav Evol. 60(3):165-80.
    Jen PH-S, Suga N (1976) Coordinated activities of the middle-ear and laryngeal muscles in echolocating bats. Science. 191:950-952.
    Jen PH, Schlegel PA (1982) Auditory physiological properties of the neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A. 147:351-363.
    Jones G, Teeling EC (2006). The evolution of echolocation in bats. Trends in Ecology and Evolution. 21(3):149-156.
    Jones G, Siemers BM (2011) The communicative potential of bat echolocation pulses. J Comp Physiol A. 197:447-457.
    Kamada T, Jen PH-S (1990) Auditory spatial sensitivity of cerebellar neurons of the big brown bat, Eptesicus fuscus. Brain Res. 528:123-129.
    Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature. 521(7550):74-76.
    Kössl M, Vater M (1985) The cochlear frequency map of the mustache bat, Pteronotus parnellii. J Comp Physiol A. 157:687-697.
    Kössl M, Vater M (1995) Coclear structure and function in bats. In: Popper AN, Fay RR, editors. Handbook of auditory research. New York: Springer Press. pp. 191-234.
    Kössl M, Vater M (1996) Further studies on the mechanics of the cochlear partition inthe mustached bat. II. A second cochlear frequency map derived from acoustic distortion products. Hear Res. 94:78-87.
    Kössl M, Mayer F, Frank G, Faulstich M, Russell IJ (1999) Evolutionary adaptations of cochlear function in Jamaican mormoopid bats. J Comp Physiol A. 185, 217-228.
    Ladhams A, Pickles JO (1996) Morphology of the monotreme organ of Corti and macula lagena. J Comp Neurol. 366(2):335-47.
    Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 413(6855):519-23.
    Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2007) Accelerated FoxP2 evolution in echolocating bats. PLoS One. 2(9):e900.
    Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S (2008) The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci U S A. 105:13959-13964.
    Mainen ZF (2006) Behavioral analysis of olfactory coding and computation in rodents. Curr Opin Neurobiol. 16(4):429-34.
    Moss CF, Surlykke A (2001) Auditory scene analysis by echolocation in bats. J Acoust Soc Am. 110:2207-2226.
    Moss C, Surlykke A (2010) Probing the natural scene by echolocation in bats. Front Behav Neurosci. 4: pii: 33.
    Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A. 189:245-256.
    Pangršič T, Reisinger E, Moser T (2012) Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci. 35(11):671-80.
    Pollak GD, Cassedy JH (1989) The neural basis of echolocation in bats. New York: Springer Press.
    Pollak GD, Casseday J (2012) The neural basis of echolocation in bats. New York: Springer-Verlag.
    Pye A (1966) The structure of the cochlea in Chiroptera. I. Microchiroptera: Emballonuoridea and Rhinolophidea. J Morphol. 118:495-511.
    Ratcliffe JM, Fenton MB, Shettleworth SJ (2006) Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain Behav Evol. 67(3):165-76.
    Rundlöf M, Andersson GK, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 521(7550):77-80.
    Schug N, Braig C, Zimmermann U, Engel J, Winter H, Ruth P, Blin N, Pfister M, Kalbacher H, Knipper M (2006) Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur J Neurosci. 24:3372-3380.
    Scott JW, McBride RL, Schneider SP (1980) The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. Journal of Comparative Neurology. 194(3):519-34.
    Shen YY, Liang L, Li GS, Murphy RW, Zhang YP (2012) Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet. 8(6):e1002788.
    Shimozawa T, Sun XD, Jen PH-S (1984) Auditory space representation in the superior colliculus of the big brown bat, Eptesicus fuscus. Brain Res. 311:289-296.
    Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am. 54:157-173.
    Sinha SR, Moss CF (2007) Vocal premotor activity in the superior colliculus. Journal of Neuroscience. 27:98-110.
    Schnitzler HU, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF–FM signals. J Comp Physiol A. 197:541-559.
    Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler compensating greater horseshoe bats. Evidence for an acoustic fovea. J Comp Physiol A. 132:47-54.
    Suga N, Schlegel P (1973) Coding and processing in the auditory system of FM signal producing bats. J Acoust Soc Am. 54:174-190.
    Suga N, Jen PH (1977) Further studies on the peripheral auditory system of 'CF–FM' bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol. 69:207-232.
    Suthers RA, Fattu JM (1982) Selective laryngeal neuroanatomy and the control of phonation by the echolocating bat, Eptesicus. J Comp Physiol A. 145:529-537.
    Sørmo EG, Larsen HJ, Johansen GM, Skaare JU, Jenssen BM (2009) Immunotoxicity of polychlorinated biphenyls (PCB) in free-ranging gray seal pups with special emphasis on dioxin-like congeners. J Toxicol Environ Health A. 7:266-76.
    Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. Journal of Neuroscience. 24:3152-3163.
    Vater M, Kössl M (2011) Comparative aspects of cochlear functional organization in mammals. Hear Res. 273:89-99.
    Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature. 463:939-942.
    Washington NL, Ward S (2006) FER-1 regulates Ca2+-mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci. 119:2552-2562.
    Wilson JL, Henson MM, Gewalt SL, Keating AW, Henson DW Jr (1996) Reconstructions and cross-sectional area measurements from magnetic resonance microscopic images of the cochlea. Am J Otol. 17:347-353.
    Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, El-Zir E, Loiselet J, Petit C (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet. 21(4):363-9.
    Yasunaga S, Grati M, Chardenoux S, Smith TN, Friedman TB, Lalwani AK, Wilcox ER, Petit C (2000) OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. Am J Hum Genet. 67:591-600.

    下載圖示
    QR CODE