簡易檢索 / 詳目顯示

研究生: 楊啟盤
Yang, Chi-Pan
論文名稱: 金奈米團簇利用多爪嵌段共聚物的製備與其螢光性質的研究
Preparation of Gold Nanoclusters Encapsulated with Multi-Arm Block-Copolymers and Study of Their Fluorescence Properties
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 金奈米團簇螢光多爪數聚乙二醇化學還原法再加熱
英文關鍵詞: Gold Nanocluster, Photoluminescence, Multi-arm polyethylene glycol, Chemical reduction, Reheating
DOI URL: http://doi.org/10.6345/NTNU201900363
論文種類: 學術論文
相關次數: 點閱:96下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金奈米團簇(Gold Nanoclusters, Au NCs)具有可發光的性質、低毒性且有極小的尺寸,容易在表面進行修飾,使其可應用於離子檢測、生物標記及生物顯影等。利用不同的高分子聚合物合成金奈米團簇,可調控其螢光放光波長和量子效率,並可更進一步修飾表面的配位基團。金奈米團簇的發光的性質主要是由於配體到金属的電荷轉移 (LMCT, ligand-to-metal charge transfer),利用波長範圍在300 nm - 400 nm光源的激發條件下,可發出不同顏色的光,因此具有在影像及感測方面應用的潛力。本研究首先將多爪數的聚乙二醇聚合合成PEG-p(Glu),並在各爪數的支鏈修飾上硫醇,將修飾後高分子做為配位基團利用化學還原的方式合成金奈米團簇。實驗發現用NaBH4合成¬出來的金奈米團簇隨著PEG-p(Glu)爪數的改變,會出現兩種放光波長,分別約在460 nm及650 nm,更進一步地利用水浴法加熱合成的金奈米團簇,其放光波長會再次產生變化。金奈米團簇的大小可能受到不同配位基團的化學結構和合成條件的影響,導致螢光出現變化。結果顯示出利用不同爪數的嵌段共聚物合成的金奈米團簇具有控制金奈米團簇放光波長的潛力。

    Gold Nanoclusters (Au NCs) have luminescent properties, low toxicity, extremely small size, and easy engineered surface modification, which make the gold nanoclusters can be applied in ion detection, biomarking and biological development. Using different functionalized polymers, gold nanoclusters can be synthesized to control the fluorescence emission wavelength, quantum efficiency, and further surface modification. The photoluminescence properties of the Au NCs are originated from ligand-to-metal charge transfer (LMCT), leading to the different emission wavelength under the excitation ranging from 300 nm - 400 nm. The unique luminescent properties of Au NCs possess the potential in the fields of imaging and sensing. In this study, the multi-arm PEG-p(Glu) with different number of arms were synthesized by a ring-opening polymerization method, and further modified with cystamine on the side chain. The thiolated polymers were used as the ligand to synthesize the Au NCs. With the usage of NaBH4 as the reducing agent, the photoluminescence spectra of Au NCs showed two emission wavelengths at 460 nm and 650 nm. Further, the emission wavelength changed again, when the Au NCs were annealed with water bath method. The size of the Au NCs may be affected by the synthesis conditions and the usage of different ligands, resulting in the change of photoluminescence wavelength. The results show that the Au NCs synthesized using multi-arm PEG-p(Glu) have the potential to control the cluster size and emission wavelength.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖表附錄 VI 第一章 緒論 1 1-1奈米材料的簡介 1 1-2金奈米材料 6 1-3金屬奈米材料的製備 10 1-4金奈米團簇 13 1-4-1合成金奈米團簇 15 1-4-2金奈米團簇的放光機制 17 第二章 文獻回顧與研究動機 18 2-1 以聚乙二醇模板作為配位基團合成的金奈米團簇 18 2-2 調整金奈米團簇的放光 20 2-2-1不同配位基團的金奈米團簇 20 2-2-2表面配位基團影響金奈米團簇放光波長 23 2-2-3影響金奈米團簇放光強度 27 2-3 用二次的步驟合成金奈米團簇 29 2-4研究動機 30 第三章 實驗藥品及儀器 31 3-1實驗藥品 31 3-2 儀器設備及其基本原理 32 3-2-1紫外光-可見光吸收光譜儀( UV-Vis Spectrophotomer ) 32 3-2-2光致發光光譜儀(Photoluminescence Spectrometer, PL) 33 3-2-3穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 34 3-2-4動態光散射儀( Dynamic Light Scattering,DLS ) 35 3-2-5 X-射線光電子光譜儀(X-ray photoelectron spectroscopy, XPS) 36 3-2-6核磁共振光譜(Nuclear Magnetic Resonance spectroscopy,NMR) 37 3-2-7超濾離心管(Vivaspin) 38 3-3 實驗步驟與方法 39 3-3-1合成多爪poly(BLG) (γ-benzyl-L-glutamate) 39 3-3-2多爪嵌段共聚物的水解 40 3-3-3將Cystamie修飾在多爪嵌段共聚物的支鏈上 40 3-3-4用Dithiothreitol將Cystamie的雙硫鍵還原 41 3-3-5合成金奈米團簇 42 第四章 結果與討論 43 4-1多爪嵌段共聚物的合成與鑑定 43 4-1-1 Multi-arm-PEG-p(Glu)的合成 43 4-1-2 多爪嵌段共聚物的分析 45 4-2金奈米團簇的鑑定 48 4-2-1金奈米團簇的光學鑑定 48 4-2-2金奈米團簇形狀及大小的鑑定 53 4-2-3 XPS分析 59 4-3 ESI-MS質譜鑑定 65 第五章結論 67 附錄 68 參考資料 76

    1. Berends, A. C.; de Mello Donega, C., Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J Phys Chem Lett 2017, 8 (17), 4077-4090.

    2. Schmid, G.; Corain, B., Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. European Journal of Inorganic Chemistry 2003, 2003 (17), 3081-3098.

    3. X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.

    4. Stamplecoskie, K. G.; Kamat, P. V., Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J Am Chem Soc 2014, 136 (31), 11093-11099.

    5. Ueber wassrige Losungen metallischen Goldes ;von Richard Zsigmondy

    6. 多型態的金奈米材料 郭俊宏 黃暄益

    7. Chen, Y.; Xianyu, Y.; Jiang, X., Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Acc Chem Res 2017, 50 (2), 310-319.

    8. Xue, Y.; Li, X.; Li, H.; Zhang, W., Quantifying thiol-gold interactions towards the efficient strength control. Nat Commun 2014, 5, 4348.

    9. Use of Electroactive Thiols To Study the Formation and. Exchange of Alkanethiol Monolayers on Gold American Chemical Society 1991

    10. Surface-Enhanced Raman Scattering. from Individual Au Nanoparticles and
    Nanoparticle Dimer Substrates

    11. Sun, L.; Chen, P.; Lin, L., Enhanced Molecular Spectroscopy via Localized Surface Plasmon Resonance. In Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, 2016.

    12. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008, 60 (11), 1307-1315.

    13. Targeted Gold Nanoparticles enable Molecular CT Imaging of. Cancer Nano Lett. 2008 (12) 4593–4596.

    14. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods J. AM. CHEM. SOC. 2006, 128, 2115-2120

    15. Toledano, R.; Mandler, D., Electrochemical Codeposition of Thin Gold Nanoparticles/Sol−Gel Nanocomposite Films. Chemistry of Materials 2010, 22 (13), 3943-3951.

    16. Eskandari-Nojedehi, M.; Jafarizadeh-Malmiri, H.; Rahbar-Shahrouzi, J., Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies. Green Processing and Synthesis 2018, 7 (1), 38-47.

    17. Cui, M.; Zhao, Y.; Song, Q., Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends in Analytical Chemistry 2014, 57, 73-82.

    18. Shi, H.; Ou, M. Y.; Cao, J. P.; Chen, G. F., Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Advances 2015, 5 (105), 86740-86745.

    19. Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges

    20. Zheng, Y.; Lai, L.; Liu, W.; Jiang, H.; Wang, X., Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interface Sci 2017, 242, 1-16.

    21. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid. J. CHEM. SOC., CHEM. COMMUN., 1994

    22. Synthesis and reactions of functionalised gold nanoparticles. J. CHEM. SOC., CHEM. COMMUN., 1995

    23. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 2012, 134 (40), 16662-16670.

    24. Growth of Highly Fluorescent Polyethylene Glycol- and Zwitterion-Functionalized Gold Nanoclusters. American Chemical Society2013,7(3),2509-2521

    25. Mishra, D.; Aldeek, F.; Lochner, E.; Palui, G.; Zeng, B.; Mackowski, S.; Mattoussi, H., Aqueous Growth of Gold Clusters with Tunable Fluorescence Using Photochemically Modified Lipoic Acid-Based Ligands. Langmuir 2016, 32 (25), 6445-6458.

    26. High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. J. AM. CHEM. SOC. 2003, 125, 7780-7781

    27. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. AM. CHEM. SOC. 2009, 131, 888–889

    28. Liu, G.; Shao, Y.; Ma, K.; Cui, Q.; Wu, F.; Xu, S., Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bulletin 2012, 45 (2), 69-74.

    29. Conroy, C. V.; Jiang, J.; Zhang, C.; Ahuja, T.; Tang, Z.; Prickett, C. A.; Yang, J. J.; Wang, G., Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions. Nanoscale 2014, 6 (13), 7416-23.

    30. Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004, 93 (7), 077402.

    31. Yang, Y.; Han, A.; Li, R.; Fang, G.; Liu, J.; Wang, S., Synthesis of highly fluorescent gold nanoclusters and their use in sensitive analysis of metal ions. Analyst 2017, 142 (23), 4486-4493.

    32. Liu, J.; Duchesne, P. N.; Yu, M.; Jiang, X.; Ning, X.; Vinluan, R. D., 3rd; Zhang, P.; Zheng, J., Luminescent Gold Nanoparticles with Size-Independent Emission. Angew Chem Int Ed Engl 2016, 55 (31), 8894-8898.

    33. Yuan, Z.; Du, Y.; He, Y., Hyperbranched polyamine assisted synthesis of dual-luminescent gold composite with pH responsive character. Methods Appl Fluoresc 2017, 5 (1), 014011.

    34. Londono-Larrea, P.; Vanegas, J. P.; Cuaran-Acosta, D.; Zaballos-Garcia, E.; Perez-Prieto, J., Water-Soluble Naked Gold Nanoclusters Are Not Luminescent. Chemistry 2017, 23 (34), 8137-8141.

    35. Sun, J.; Yang, F.; Yang, X., Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nanoscale 2015, 7 (39), 16372-16380.

    36. Mori, H.; Iwata, M.; Ito, S.; Endo, T., Ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in ionic liquids. Polymer 2007, 48 (20), 5867-5877.

    37. NHS and Sulfo-NHS. Thermo.

    38. Li, X.; Gao, Y.; Serpe, M. J., Reductant-responsive poly(N-isopropylacrylamide) microgels and microgel-based optical materials. Canadian Journal of Chemistry 2015, 93 (7), 685-689.

    39. Tong, F.; Dong, B.; Chai, R.; Tong, K.; Wang, Y.; Chen, S.; Zhou, X.; Liu, D., Simvastatin nanoparticles attenuated intestinal ischemia/reperfusion injury by downregulating BMP4/COX-2 pathway in rats. Int J Nanomedicine 2017, 12, 2477-2488.

    40. Li, H.; Jiang, H.; Zhao, M.; Fu, Y.; Sun, X., Intracellular redox potential-responsive micelles based on polyethylenimine-cystamine-poly(ε-caprolactone) block copolymer for enhanced miR-34a delivery. Polymer Chemistry 2015, 6 (11), 1952-1960.

    下載圖示
    QR CODE