簡易檢索 / 詳目顯示

研究生: 鄭如芳
Cheng, Ju-Fang
論文名稱: 以脂肪幹細胞分泌之微囊泡改善單邊輸尿管結紮造成的腎臟纖維化
Adipose Stem Cells-Derived Microvesicles Ameliorate Unilateral Ureteral Obstruction-Induced Renal Fibrosis
指導教授: 鄭劍廷
Chien, Chiang-Ting
口試委員: 鄭劍廷
Chien, Chiang-Ting
徐世平
Hsu, Shih-Ping
鄭雅蓉
Cheng, Ya-Jung
口試日期: 2024/07/26
學位類別: 碩士
Master
系所名稱: 生技醫藥產業碩士學位學程
Graduate Program of Biotechnology and Pharmaceutical Industries
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 51
中文關鍵詞: 慢性腎臟病腎臟纖維化脂肪幹細胞微囊泡單邊輸尿管結紮手術
英文關鍵詞: Chronic kidney disease, renal fibrosis, adipose-derived stem cells, microvesicles, unilateral ureteral obstruction
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401490
論文種類: 學術論文
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 圖次 v 縮寫 vi 第一章 序論 1 1. 慢性腎臟病 1 1-1. 慢性腎臟病的流行 1 1-2. 慢性腎臟病的診斷 1 1-3. 慢性腎臟病的風險因素與症狀 1 1-5. 腎臟纖維化 2 2. 脂肪幹細胞與之分泌的微囊泡 4 2-1. 幹細胞 4 2-2. 脂肪幹細胞分泌之微囊泡 4 3. 研究目的及重要性 5 第二章 研究材料與方法 6 1. 脂肪幹細胞的培養及微囊泡之分離 6 1-1. 獲取脂肪幹細胞 6 1-2. 脂肪幹細胞微囊泡分離 6 2. 動物 7 2-1. 動物模式 7 2-2. 動物分組 7 3. 細胞實驗 8 4. 組織染色 9 4-1. 蘇木素-伊紅染色 (Hematoxylin-Eosin stain, H&E) 9 4-2. 馬森三色染色 (Masson’s Trichrome Stain) 9 4-3. 免疫組織化學染色 (Immunohistochemistry, IHC) 10 4-4. 普魯士藍染色 (Prussian Blue Staining) 10 5. 西方墨點法 (Western Blotting) 10 6. H2DCFDA 11 7. 細胞存活率 12 8. 統計分析 12 第三章 結果 13 第四章 討論 19 第五章 結論 24 圖 25 參考文獻 46

    1. Bikbov, B., et al., Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The lancet, 2020. 395(10225): p. 709-733.
    2. Xie, Y., et al., Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney international, 2018. 94(3): p. 567-581.
    3. Kalantar-Zadeh, K., et al., Chronic kidney disease. The lancet, 2021. 398(10302): p. 786-802.
    4. Eknoyan, G., et al., KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney int, 2013. 3(1): p. 5-14.
    5. Levey, A.S., et al., Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney international, 2005. 67(6): p. 2089-2100.
    6. Kovesdy, C.P., Epidemiology of chronic kidney disease: an update 2022. Kidney International Supplements, 2022. 12(1): p. 7-11.
    7. Webster, A.C., et al., Chronic kidney disease. The lancet, 2017. 389(10075): p. 1238-1252.
    8. Jha, V., et al., Chronic kidney disease: global dimension and perspectives. The Lancet, 2013. 382(9888): p. 260-272.
    9. Almutary, H., A. Bonner, and C. Douglas, Which patients with chronic kidney disease have the greatest symptom burden? A comparative study of advanced CKD stage and dialysis modality. Journal of renal care, 2016. 42(2): p. 73-82.
    10. Pham, P.C., et al., 2017 update on pain management in patients with chronic kidney disease. Clinical kidney journal, 2017. 10(5): p. 688-697.
    11. Verduzco, H.A. and S. Shirazian, CKD-associated pruritus: new insights into diagnosis, pathogenesis, and management. Kidney international reports, 2020. 5(9): p. 1387-1402.
    12. Gregg, L.P., et al., Fatigue in nondialysis chronic kidney disease: correlates and association with kidney outcomes. American journal of nephrology, 2019. 50(1): p. 37-47.
    13. Plantinga, L., et al., Association of sleep-related problems with CKD in the United States, 2005-2008. American Journal of Kidney Diseases, 2011. 58(4): p. 554-564.
    14. Drew, D.A., D.E. Weiner, and M.J. Sarnak, Cognitive impairment in CKD: pathophysiology, management, and prevention. American Journal of Kidney Diseases, 2019. 74(6): p. 782-790.
    15. USRDS, U., Renal Data System, USRDS 2012 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, 2012.
    16. Di Angelantonio, E., et al., Renal function and risk of coronary heart disease in general populations: new prospective study and systematic review. PLoS Medicine, 2007. 4(9): p. e270.
    17. Perkovic, V., et al., The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS medicine, 2008. 5(10): p. e207.
    18. Liu, Y., Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney international, 2006. 69(2): p. 213-217.
    19. Wynn, T., Cellular and molecular mechanisms of fibrosis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2008. 214(2): p. 199-210.
    20. Zeisberg, M. and E.G. Neilson, Mechanisms of tubulointerstitial fibrosis. Journal of the American Society of Nephrology, 2010. 21(11): p. 1819-1834.
    21. Boor, P., T. Ostendorf, and J. Floege, Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nature Reviews Nephrology, 2010. 6(11): p. 643-656.
    22. Eddy, A.A., Molecular basis of renal fibrosis. Pediatric nephrology, 2000. 15: p. 290-301.
    23. Chung, A.C. and H.Y. Lan, Chemokines in renal injury. Journal of the American Society of Nephrology, 2011. 22(5): p. 802-809.
    24. Vielhauer, V., et al. Targeting the recruitment of monocytes and macrophages in renal disease. in Seminars in nephrology. 2010. Elsevier.
    25. Vernon, M.A., K.J. Mylonas, and J. Hughes. Macrophages and renal fibrosis. in Seminars in nephrology. 2010. Elsevier.
    26. Duffield, J.S. Macrophages and immunologic inflammation of the kidney. in Seminars in nephrology. 2010. Elsevier.
    27. Genovese, F., et al., The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis & tissue repair, 2014. 7: p. 1-14.
    28. Meran, S. and R. Steadman, Fibroblasts and myofibroblasts in renal fibrosis. International journal of experimental pathology, 2011. 92(3): p. 158-167.
    29. Grande, M.T. and J.M. Lopez-Novoa, Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nature Reviews Nephrology, 2009. 5(6): p. 319-328.
    30. Schieppati, A. and G. Remuzzi, Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney International, 2005. 68: p. S7-S10.
    31. Li, J., et al., Ferroptosis: past, present and future. Cell death & disease, 2020. 11(2): p. 88.
    32. Zhu, H. and A. Sun, Programmed necrosis in heart disease: molecular mechanisms and clinical implications. Journal of molecular and cellular cardiology, 2018. 116: p. 125-134.
    33. Deng, F., et al., Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. The Journal of clinical investigation, 2019. 129(11): p. 5033-5049.
    34. Sun, X., et al., Metallothionein‐1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016. 64(2): p. 488-500.
    35. Wenzel, S.E., et al., PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 2017. 171(3): p. 628-641. e26.
    36. Jafar, T.H., et al., Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Annals of internal medicine, 2003. 139(4): p. 244-252.
    37. Obi, Y., et al., Estimated glomerular filtration rate and the risk–benefit profile of intensive blood pressure control amongst nondiabetic patients: a post hoc analysis of a randomized clinical trial. Journal of internal medicine, 2018. 283(3): p. 314-327.
    38. Sim, J.J., et al., Impact of achieved blood pressures on mortality risk and end-stage renal disease among a large, diverse hypertension population. Journal of the American College of Cardiology, 2014. 64(6): p. 588-597.
    39. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem cell research & therapy, 2019. 10(1): p. 1-22.
    40. Pittenger, M.F., et al., Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 2019. 4(1): p. 22.
    41. Squillaro, T., G. Peluso, and U. Galderisi, Clinical trials with mesenchymal stem cells: an update. Cell transplantation, 2016. 25(5): p. 829-848.
    42. Galderisi, U. and A. Giordano, The gap between the physiological and therapeutic roles of mesenchymal stem cells. Medicinal research reviews, 2014. 34(5): p. 1100-1126.
    43. Imberti, B., et al., Insulin-like growth factor-1 sustains stem cell–mediated renal repair. Journal of the American Society of Nephrology, 2007. 18(11): p. 2921-2928.
    44. Zhou, Y., et al., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem cell research & therapy, 2013. 4(2): p. 1-13.
    45. Bruno, S., et al., Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology: JASN, 2009. 20(5): p. 1053.
    46. Bernardo, M.E. and W.E. Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation. Cell stem cell, 2013. 13(4): p. 392-402.
    47. Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem cells, 2007. 25(11): p. 2896-2902.
    48. Semedo, P., et al., Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. International immunopharmacology, 2009. 9(6): p. 677-682.
    49. Burgos-Silva, M., et al., Adipose tissue-derived stem cells reduce acute and chronic kidney damage in mice. PLoS One, 2015. 10(11): p. e0142183.
    50. Monsel, A., et al., Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology, 2014. 121(5): p. 1099-1121.
    51. Rizvanov, A.A., et al., Hematopoietic and mesenchymal stem cells in biomedical and clinical applications. 2016, Hindawi.
    52. Kunter, U., et al., Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. Journal of the American Society of Nephrology, 2007. 18(6): p. 1754-1764.
    53. Klinkhammer, B.M., et al., Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PloS one, 2014. 9(3): p. e92115.
    54. Shifrin Jr, D.A., et al., Extracellular vesicles: communication, coercion, and conditioning. Molecular biology of the cell, 2013. 24(9): p. 1253-1259.
    55. Booth, A.M., et al., Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. The Journal of cell biology, 2006. 172(6): p. 923-935.
    56. Ratajczak, J., et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006. 20(5): p. 847-856.
    57. Cocucci, E., G. Racchetti, and J. Meldolesi, Shedding microvesicles: artefacts no more. Trends in cell biology, 2009. 19(2): p. 43-51.
    58. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 2013. 200(4): p. 373-383.
    59. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences, 2011. 68: p. 2667-2688.
    60. Eldh, M., et al., Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PloS one, 2010. 5(12): p. e15353.
    61. Tang, X.-D., et al., Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA. Stem cells, 2017. 35(7): p. 1849-1859.
    62. Kang, T., et al., Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem cells translational medicine, 2016. 5(4): p. 440-450.
    63. Gatti, S., et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury. Nephrology Dialysis Transplantation, 2011. 26(5): p. 1474-1483.
    64. Wang, Y., et al., Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem cell research & therapy, 2015. 6: p. 1-14.
    65. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells, 2006. 24(5): p. 1294-1301.
    66. Lee, R.H., et al., Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular physiology and biochemistry, 2004. 14(4-6): p. 311-324.
    67. De Ugarte, D.A., et al., Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells tissues organs, 2003. 174(3): p. 101-109.
    68. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. science, 1999. 284(5411): p. 143-147.
    69. Dmitrieva, R.I., et al., Bone marrow-and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell cycle, 2012. 11(2): p. 377-383.
    70. Zhao, Y., et al., The role of erastin in ferroptosis and its prospects in cancer therapy. OncoTargets and therapy, 2020: p. 5429-5441.
    71. Genovese, F., et al., The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair, 2014. 7(1): p. 4.
    72. Klahr, S. and J. Morrissey, Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol, 2002. 283(5): p. F861-75.
    73. Manucha, W. and P.G. Valles, Apoptosis modulated by oxidative stress and inflammation during obstructive nephropathy. Inflamm Allergy Drug Targets, 2012. 11(4): p. 303-12.
    74. Holness, C.L. and D.L. Simmons, Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood, 1993. 81(6): p. 1607-13.
    75. Cherng, S., J. Young, and H. Ma, Alpha-smooth muscle actin (α-SMA). J Am Sci, 2008. 4(4): p. 7-9.
    76. Saratlija Novakovic, Z., et al., The interstitial expression of alpha-smooth muscle actin in glomerulonephritis is associated with renal function. Med Sci Monit, 2012. 18(4): p. CR235-40.
    77. Dendooven, A., et al., Oxidative stress in obstructive nephropathy. Int J Exp Pathol, 2011. 92(3): p. 202-10.
    78. Pat, B., et al., Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int, 2005. 67(3): p. 931-43.
    79. Chen, Z.W., et al., Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling. Int Urol Nephrol, 2018. 50(3): p. 559-570.
    80. Soetikno, V., et al., Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res, 2013. 57(9): p. 1649-59.
    81. Zhu, H., et al., Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett, 2005. 579(14): p. 3029-36.
    82. Ryter, S.W., et al., Mechanisms of cell death in oxidative stress. Antioxid Redox Signal, 2007. 9(1): p. 49-89.
    83. Miyajima, A., et al., Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int, 2000. 58(6): p. 2301-13.
    84. Mao, L., et al., The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis, 2020. 11(7): p. 518.
    85. Li, F.J., et al., System X(c) (-)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol, 2022. 13: p. 910292.
    86. Wang, J., et al., Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov, 2022. 8(1): p. 127.
    87. Dodson, M., R. Castro-Portuguez, and D.D. Zhang, NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol, 2019. 23: p. 101107.
    88. Salazar, M., et al., Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem, 2006. 281(21): p. 14841-51.
    89. Docherty, N.G., et al., Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol, 2006. 290(1): p. F4-13.
    90. Portilla, D., Apoptosis, fibrosis and senescence. Nephron Clinical Practice, 2014. 127(1-4): p. 65-69.
    91. Daemen, M.A., et al., Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. The Journal of clinical investigation, 1999. 104(5): p. 541-549.
    92. Schnaper, H.W., et al., TGF-β signal transduction and mesangial cell fibrogenesis. American Journal of Physiology-Renal Physiology, 2003. 284(2): p. F243-F252.
    93. Miyajima, A., et al., Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney international, 2000. 58(6): p. 2301-2313.
    94. Ikeda, Y., et al., Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PloS one, 2014. 9(2): p. e89355.
    95. Kanasaki, K., et al., Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes, 2014. 63(6): p. 2120-2131.
    96. Wang, J., et al., Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell death discovery, 2022. 8(1): p. 127.
    97. Zhang, Y., et al., IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radical Biology and Medicine, 2022. 193: p. 579-594.
    98. Eirin, A., et al., MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene, 2014. 551(1): p. 55-64.
    99. Ratajczak, J., et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006. 20(5): p. 847-56.
    100. Kang, T., et al., Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med, 2016. 5(4): p. 440-50.

    無法下載圖示 本全文未授權公開
    QR CODE