簡易檢索 / 詳目顯示

研究生: 陳奐杰
Huan-Chieh Chen
論文名稱: 遞減強度的長時間持續跑步對脂肪代謝的影響
The effect of gradual intensity decrement long duration running on fat metabolism
指導教授: 謝伸裕
Hsieh, Shen-Yu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 59
中文關鍵詞: 脂肪代謝能量消耗運動強度運動持續時間遞減強度
英文關鍵詞: fat metabolism, energy expenditure, exercise intensity, exercise duration, gradual decrement intensity
論文種類: 學術論文
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討固定強度運動 (constant intensity exercise, CIE) 與遞減強度運動 (gradual intensity decrement exercise, GDE) 兩種模式在長時間持續跑步 (60分鐘) 的脂肪代謝與能量消耗之變化。方法:以12名健康男性為受試者 (年齡 25.2 ± 2.4 歲、身高 176.9 ± 6.6 公分、體重 70.2 ± 9.0 公斤、身體質量指數 22.5 ± 3.8 kg/m2、體脂肪 17.6 ± 5.2 %、最大攝氧量 48.2 ± 5.3 ml/kg/min),採重複量數設計,依照平衡次序法進行兩種不同模式運動。CIE與GDE之間休息7天。實驗數據均以平均數 + 標準差表示,分別以重複量數單因子變異數分析與相依樣本t考驗進行統計分析,顯著水準訂於α=.05。結果:能量消耗方面,CIE在第20~30分鐘 (122.8 ± 26.9 kcal)、第40~50分鐘 (124.1 ± 23.5 kcal) 與第50~60分鐘 (124.9 ± 23.6 kcal) 顯著高於GDE (114.1 ± 24.3、103.0 ± 23.8、102.8 ± 25.3 kcal)。能量消耗累積量,CIE (736.2 ± 149.3 kcal) 顯著高於GDE (673.0 ± 137.5 kcal)。總能量消耗,CIE (1600.1 ± 323.7 kcal) 顯著高於GDE (1283.3 ± 228.0 kcal)。脂肪利用方面,在呼吸交換率的比較上,GDE在第40~50 (0.80 ± 0.06) 與50~60分鐘 (0.79 ± 0.06) 顯著低於CIE (0.83 ± 0.06、0.83 ± 0.06)。以脂肪為來源的能量消耗量,CIE與GDE的比較上並無顯著差異。脂肪累積代謝量與脂肪利用比率同樣未達顯著差異。但隨著運動時間的增加,兩者的脂肪利用均有上升的趨勢。自覺努力程度方面,GDE在第20~30 (10.6 ± 1.4)、30~40 (10.8 ± 1.9)、40~50 (10.4 ± 2.2)、50~60 (10.3 ± 2.4) 分鐘顯著低於CIE (12.0 ± 1.9、12.3 ± 2.2、12.7 ± 2.4、13.0 ± 2.6)。結論:持續跑步60分鐘,CIE的能量消耗雖然較多,但以脂肪為來源的利用量兩者並無差異。兩種模式均隨運動持續時間的增加而提升脂肪利用。在脂肪利用方面,GDE與CIE效果是相當的。GDE模式由於強度遞減,有助於延長更多的運動持續時間。因此強度遞減的運動模式是可以提供給民眾多一項選擇的。

    Purpose: To investigate the effect of gradual intensity decrement long duration running on fat metabolism and energy expenditure. Methods: Twelve healthy male served as subjects (age:25.2 ± 2.4 yrs ; height:176.9 ± 6.6 cm ; weight: 70.2 ± 9.0 kg ; BMI:22.5 ± 3.8 kg/m2 ; body fat %:17.6 ± 5.2 % ; VO2max:48.2 ± 5.3 ml/kg/min). Subjects performed the same duration (60 min) treadmill running with constant intensity exercise (CIE) and with gradual intensity decrement exercise (GDE). A repeated-measures design (seven days apart) was used, and the testing order was counter balanced. All numerical data were expressed in mean + SD. Repeated measures one-way ANOVA and Student’s paired t-test were used for statistical analysis (SPSS 13.0). The significance level was set at p <.05. Results: CIE was significantly higher than GDE on the 20~30、40~50、50~60 min of the energy expenditure (122.8 ± 26.9 kcal v.s. 114.1 ± 24.3 kcal ; 124.1 ± 23.5 kcal v.s. 103.0 ± 23.8 kcal ; 124.9 ± 23.6 kcal v.s. 102.8 ± 25.3 kcal). CIE was significantly higher than GDE of the accumulate energy expenditure (736.2 ± 149.3 kcal v.s. 673.0 ± 137.5 kcal). CIE was significantly higher than GDE total energy expenditure (1600.1 ± 323.7 kcal v.s. 1283.3 ± 228.0 kcal). On fat metabolism, the RER of GDE was significantly lower than CIE on the 40~50 and 50~60 min (0.80 ± 0.06 v.s. 0.83 ± 0.06 ; 0.79 ± 0.06 v.s. 0.83 ± 0.06). Fat as the fuel of energy expenditure, two patterns had no significant differences. The total fat metabolism and the ratio of fat utilization also had no significant differences. Both CIE and GDE increase fat metabolism as exercise duration increase. On the rating of perceived exertion (RPE), GDE was significantly lower than CIE on the 20~30、30~40、40~50、50~60 min (10.6 ± 1.4 v.s. 12.0 ± 1.9 ; 10.8 ± 1.9 v.s. 12.3 ± 2.2 ; 10.4 ± 2.2 v.s. 12.7 ± 2.4 ; 10.3 ± 2.4 v.s. 13.0 ± 2.6). Conclusions: Although CIE expensed more calorie than GDE, it was not significantly higher than GDE on fat metabolism. Both CIE and GDE increase fat metabolism as exercise duration increase. However, due to the decrease of exercise intensity, GDE would make it easier to increase exercise duration. Therefore, GDE is an alternative mode of exercise for weight loss.

    目次 第壹章 緒論 一 前言....................................................1 二 問題背景 ...............................................2 三 研究目的................................................5 四 研究假設................................................5 五 研究範圍與限制...........................................6 六 研究的重要性.............................................6 七 名詞操作性定義...........................................7 第貳章 相關文獻探討.........................................8 一 運動與能量供應來源...................................8 二 運動的能量系統......................................10 三 運動與脂肪代謝......................................12 四 運動與脂肪最大代謝強度...............................13 五 運動與疲勞.........................................14 六 本章總結...........................................17 第參章 研究方法............................................18 一 研究對象...........................................18 二 實驗設計...........................................18 三 實驗方法與步驟......................................20 四 統計分析...........................................23 第肆章 結果...............................................24 一 基本資料...........................................24 二 攝氧量的比較........................................24 三 能量消耗的比較......................................27 四 脂肪代謝的比較......................................30 五 自覺努力程度的比較..................................35 六 心率的比較.........................................37 第伍章 討論...............................................39 一 不同運動模式對於攝氧量的影響..........................39 二 不同運動模式對於能量消耗與脂肪利用的影響...............40 三 不同運動模式對於運動後超額攝氧量的影響.................42 四 不同運動模式對於自覺努力程度的影響....................43 五 不同運動模式對於心率的影響...........................45 六 結論與建議.........................................46 引用文獻...................................................48 附錄一....................................................54 附錄二....................................................55 附錄三....................................................57 附錄四....................................................58 表次 表一 受試者基本資料........................................24 表二 不同運動模式之攝氧量比較表..............................26 表三 在不同時間點之攝氧量比較表..............................27 表四 不同運動模式之能量消耗比較表............................28 表五 在不同時間點之能量消耗比較表............................30 表六 不同運動模式之呼吸交換率比較表..........................31 表七 不同運動模式之脂肪消耗比較表............................32 表八 不同運動模式之脂肪利用比率比較表........................33 表九 不同運動模式之自覺努力程度比較表........................36 表十 在不同時間點之心率比較表...............................38 圖次 圖一 脂肪與碳水化合物之能量交叉概念圖........................3 圖二 問題背景的關係預想圖..................................5 圖三 實驗流程圖..........................................19 圖四 運動處理的操作流程圖.................................22 圖五 進行強度遞減模式的運動強度............................22 圖六 不同運動模式在運動期的攝氧量比較圖.....................25 圖七 不同運動模式在不同時段的攝氧量比較圖...................26 圖八 不同運動模式在不同時段的能量消耗比較圖.................29 圖九 不同運動模式的呼吸交換率比較圖........................31 圖十 不同運動模式的脂肪利用比率比較圖.......................33 圖十一 在不同時間點的脂肪利用比率比較圖.......................35 圖十二 在不同時間點的自覺努力程度比較圖.......................37 圖十三 不同運動模式的心率比較圖..............................38

    李再立 (1995)。運動與脂肪酸的利用。中華體育季刊,9(3),70-78。
    林正常、林貴福、徐台閣、吳慧君 (譯) (2002)。運動生理學:體適能與運動表現的理論與應用。台北市:藝軒。
    (Powers, S. K., & Hoeley, E. T., 2001)
    林玉瓊、吳忠芳、王順正 (2006)。30分鐘臨界速度跑步的脂肪代謝變化研究。體育學報,39(4),23-34。
    謝伸裕 (1997)。基礎運動生物化學。台北市:力大。
    Astorino, T. A. (2000). Is the ventilatory threshold coincident with maximal fat oxidation during submaximal exercise in women? Journal of Sports Medicine and Physical Fitness, 40(3), 209-216.
    Barclay, J. K., & Hansel, M. (1991). Free radicals may contribute to oxidative skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology, 69(2), 279-284.
    Bergman, B. C., & Brooks, G. A. (1999). Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. Journal of Applied Physiology, 86(2), 479-487.
    Borg, G. (1982). Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. International Journal of Sports Medicine, 3(3), 153-158.
    Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
    Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56(6), 679-685.
    Brooks, G. A., & Mercier, J. (1994). Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. Journal of Applied Physiology, 76(6), 2253-2261.
    Buttelli, O., Seck, D., Vandewalle, H., Jouanin, J. C., & Monod, H.(1996). Effect of fatigue on maximal velocity and maximal torque during short exhausting cycling. European Journal of Applied Physiology and Occupational Physiology, 73(1-2), 175-179.
    Ceci, R., & Hassmén, P. (1991). Self-monitored exercise at three different RPE intensities in treadmill vs field running. Medicine and Science in Sports and Exercise, 23(6), 732-738.
    Coyle, E. F. (1995). Substrate utilization during exercise in active people. American Journal of Clinical Nutrition, 61, 968-979.
    Davies, K. J., Packer, L., & Brooks, G. A. (1982). Exercise bioenergetics following sprint training. Archives of Biochemistry and Biophysics, 215(1), 260-265.
    Epstein, L. H., & Goldfield, G. S. (1999). Physical activity in the treatment of childhood overweight and obesity:Current evidence and research issues. Medicine and Science in Sports and Exercise, 31, 624-630.
    Fitt, R. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews, 74, 49-94.
    Glass, S. C., Santos, V. J., & Armstrong, D. E. (1999). The effect of mode of exercise on fat oxidation during exercise. Journal of Strength and Conditioning Research, 13(1), 29-34.
    Gollnick, P. D. (1985). Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Federation Proceedings, 44(2), 353-357.
    Gomez-Cabrera, M. C., Martínez, A., Santangelo, G., Pallardó, F. V., Sastre, J., & Viña, J. (2006). Oxidative stress in marathon runners: interest of antioxidant supplementation. The British Journal of Nutrition, 96(l), S31-33.
    Gore, C. J., & Withers, R. T. (1990). The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. European Journal of Applied Physiology and Occupational Physiology, 60, 169-174.
    Grandevia, S. C., Enoka, R. M., McComas, A. J., Stuart, D. G., & Thomas, C. K. (1995). Fatigue. New York : Plenum Press.
    Green, H. J. (1991). How important is endogenous muscle glycogen to fatigue in prolonged exercise? Canadian Journal of Physiology and Pharmacology, 69(2), 290-297.
    Hetzler, R. K., Seip, R. L., Boutcher, S. H., Pierce, E., Snead, D., & Weltman, A. (1991). Effect of exercise modality on ratings of perceived exertion at various lactate concentrations. Medicine and Science in Sports and Exercise, 23(1), 88-92.
    Hood, D. A., & Terjung, R. L. (1990). Amino acid metabolism during exercise and following endurance training. Sports Medicine, 9(1), 23-35.
    Jeukendrup, A. E., & Achten, J. (2001). FATmax: A new Concept to optimize fatoxidation during exercise? Europen Journal of Sport Science, 1(5), 1-5.
    Johnson, B. D., Aaron, E. A., Babcock, M. A., & Dempsey, J. A. (1996). Respiratory muscle fatigue during exercise: implications for performance. Medicine and Science in Sports and Exercise, 28(9), 1129-1137.
    Klein, S., Coyle, E. F., & Wolfe, R. R. (1994). Fat metabolism during low-intensity exercise in endurance-trained and untrained men. American Journal of Physiology, 267(6 Pt 1), E934-940.
    LaForgia, J., Withers, R. T., & Gore, C. J. (2006). Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. Journal of Sports Sciences, 24(12), 1247-1264.
    Lemon, P. W., & Mullin, J. P. (1980). Effect of initial muscle glycogen levels on protein catabolism during exercise. Journal of Applied Physiology, 48(4), 624-629.
    Mathews, C., & vanHolde, K. E. (1996). Biochemistry. Menlo Park, CA: Benjamin-Cummings.
    McArdle, W., Katch, F., & Katch, V. (1996). Exercise physiology: Energy, nutrition, and human performance. Baltimore: Williams & Wilkins.
    McGilvery, R. (1983). Biochemistry: A functional approach. Philadelphia: W. B. Saunders.
    McMurray, W. (1977). Essentials of human metabolism. New York: Harper & Row.
    Must, A., Jacques, P. F., Dallal, G. E., Bajema, C. J., & Dietz, W. H. (1992). Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. New England Journal of Medicine, 327(19), 1350-1355.
    Palvou, K. N., Steffee, W. P., Lerman, R. H., & Burrows, B. A. (1985). Effect of dieting and exercise on lean body mass, oxygen uptake and strength. Medicine and Science in Sports and Exercise, 17, 967-970.
    Pi-Sunyer, F. X. (1993). Medical hazards of obesity. Annals of Internal Medicine, 119(7 Pt 2), 655-660.
    Powers, S. K., & Criswell, D. (1996). Adaptive strategies of respiratory muscles in response to endurance exercise. Medicine and Science in Sports and Exercise, 28(9), 1115-1122.
    Powers, S. K., & Howley, E. T. (2001). Exercise physiology: Theory and application to fitness and performance (4th ed.). New York:McGraw-Hill.
    Sears, C., & Stanitski, C. (1983). Chemistry for the health-related sciences. Englewood Cliffs, NJ: Prentice-Hall.
    Reid, M. B., Haack, K. E., Franchek, K. M., Valberg, P. A., Kobzik, L., & West, M. S. (1992). Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of Applied Physiology, 3(5), 1797-1804.
    Robertson, R. J., Goss, F. L., Auble, T. E., Cassinelli, D. A., Spina, R. J., & Glickman, E. L. et al. (1990). Cross-modal exercise prescription at absolute and relative oxygen uptake using perceived exertion. Medicine and Science in Sports and Exercise, 22(5), 653-659.
    Robertson, R. J., Stanko, R. T., Goss, F. L., Spina, R. J., Reilly, J. J., & Greenawalt, K. D. (1990). Blood glucose extraction as a mediator of perceived exertion during prolonged exercise. European Journal of Applied Physiology and Occupational Physiology, 61(1-2), 100-105.
    Roepstorff, C., Steffensen, C. H., Madsen, M., Stallknecht, B., Kanstrup, I. L., Richter, E. A.,et al.,(2002). Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. American Journal of Physiology. Endocrinology and Metabolism, 282(2), E435-47.
    Sahlin, K., Katz, A., & Broberg, S. (1990). Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. The American Journal of Physiology, 259(5 Pt 1), C834-841.
    Sahlin, K. (1992). Metabolic factors in fatigue. Sports Medicine, 13(2), 99-107.
    Sedlock, D. A., Fissinger, J. A., & Melby, C. L. (1989). Effect of exercise intensity and duration on postexercise energy expenditure. Medicine and Science in Sports and Exercise, 21(6), 662-666.
    Seip, R. L., Snead, D., Pierce, E. F., Stein, P., & Weltman, A. (1991). Perceptual responses and blood lactate concentration: effect of training state. Medicine and Science in Sports and Exercise, 23(1), 80-87.
    Stanley, W. C., & Connett, R. J. (1991). Regulation of muscle carbohydrate metabolism during exercise. FASEB Journal, 5(8), 2155-2159.
    Sterner, R. L., Pincivero, D. M., & Lephart, S. M. (1998). The effects of muscular fatigue on shoulderproprioception. Clinical Journal of Sport Medicine, 8, 96-101.
    Suttie, J. (1977). Introduction to biochemistry. New York: Holt, Rinehart & Wilnston.
    Wasserman, K., & Mcilroy, M. B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American Journal of Cardiology, 14, 844-852.
    Westerblad, H., Lee, J. A., Lännergren, J., & Allen, D. G. (1991). Cellular mechanisms of fatigue in skeletal muscle. American Journal of Physiology, 261(2 Pt 1), C195-209.

    下載圖示
    QR CODE