簡易檢索 / 詳目顯示

研究生: 陳駿仁
Chen, Chun-Jen
論文名稱: 除去氣體對於奈米碳管與水混和物之影響
Effects of Degassing on Carbon Nanotubes/Water Mixture
指導教授: 黃仲仁
Huang, Jung-Ren
陳志強
Chan, Chi-Keung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 49
中文關鍵詞: 疏水交互作用無介面活性劑膠體溶液奈米碳管奈米氣泡動態光散射
英文關鍵詞: Hydrophobic interaction, Surfactant-free emulsions, Carbon nanotubes, Nanobubbles, Dynamic Light Scattering
DOI URL: https://doi.org/10.6345/NTNU202204727
論文種類: 學術論文
相關次數: 點閱:183下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

疏水交互作用(hydrophobic interaction)被認為是非極性物質在水中會聚集的主要原因。已知水中的氣體是可以對該作用有增益的效果。若將疏水顆粒混合於水中,則除去氣體的混合物較富含空氣的混合物有較長的生命期。本研究以單層及多層奈米碳管的水混合物為材料,實驗除去氣體對於碳管與水混合物的影響。碳管於水中的生命期與所形成之結構是以攝影與動態光散射進行觀測。實驗中發現:除去氣體後,單層碳管於水中聚集的速率較未除氣的混合物中慢,且形成較緻密的碳管團塊。多曾碳管若未進行除氣,則碳管於水中形成類凝膠(gel-like)結構;此結構在除去氣體的碳管與水混合物中較未除氣者不明顯。實驗中所觀察到,除去氣體對單層與多層碳管的水混合物所產生之影響,是可以被石墨基板上所發現的表面奈米氣泡(surface nanobubble)解釋的。

The hydrophobic interaction causes the aggregation of non-polar materials in water. This interaction can be enhanced by the existence of gas in water; the dispersion of hydrophobic particles have longer lifetime in degassed water than in air-rich water. We study the gas-enhanced hydrophobic interaction in both single-walled and multi-walled carbon nanotubes/water mixture with and without degassing. The lifetime and structure in carbon nanotube aggregates observed by photography and multi-angle dynamic light scattering. The single-walled carbon nanotubes (SWNTs) aggregate slower and form more compact clumps in water with degassing than without degassing. The multi-walled carbon nanotubes (MWNTs) form gel-like structure in the air-containing MWNT/water mixture; this gel-like structure is less significant in degassed MWNT/water mixture. The observation can be explained with the presence of the surface nanobubbles on graphene substrates, which is similar to the walls of the carbon nanotubes, when the water is not degassed.

中文摘要 i Abstract iii Acknowledgements v Contents vii Chapter 1 Introduction 1 1.1 Hydrophobic Interaction 1 1.2 Surfactant-free Emulsions 2 1.3 Surface Nanobubbles 4 1.4 Carbon Nanotubes as Probes for Hydrophobic Interaction 4 Chapter 2 Method and Experimental Setup 9 2.1 Dynamic Light Scattering 10 2.1.1 The light scattering theory 11 2.1.2 Time-correlation function: measuring fluctuations in time 14 2.1.3 The light scattering experiment 16 2.1.4 Particle size measurement of spherical Brownian particles 19 2.2 The Degassing Methods for Liquid 22 2.2.1 The ultrasonic degassing method 22 2.2.2 The boiling degassing method 23 2.2.3 The freeze-pump-thaw cycles 23 2.3 Sample Preparation 23 2.3.1 Water and glass flask cleaning 23 2.3.2 Carbon Nanotubes 24 2.3.3 Stock solution preparation and sampling 24 2.3.4 Treatments applied to degassed and controlled samples 25 2.4 Measurements 26 Chapter 3 Experimental Results 31 3.1 SWNT/water Mixtures 31 3.2 MWNT/water Mixtures 32 3.3 Summary over Experimental Results 34 Chapter 4 Discussion and Conclusion 45 References 49

J. Israelachvili and R. Pashley, Nature 300 , 341 (1982).
R. M. Pashley, J Phys Chem-Us 100 , 15503 (1996).
R. M. Pashley, Journal of Physical Chemistry B 107 , 1714 (2003).
R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, Journal of Physical Chemistry B 109 , 1231 (2005).
M. Francis, N. Gulati, and R. M. Pashley, Journal of Colloid and Interface Science 299 , 673 (2006).
M. J. Francis and R. M. Pashley, Colloids and Surfaces a-Physicochemical and Engineering Aspects 287 , 36 (2006).
R. M. Pashley, M. J. Francis, and M. Rzechowicz, Curr Opin Colloid In 13 , 236 (2008).
J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier Science, 2010).
S. Peng, D. Lohse, and X. Zhang, Langmuir 30 , 10043 (2014).
J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, Chem Commun , 193 (2001).
K. Geckeler and T. Premkumar, Nanoscale Research Letters 6 , 136 (2011).
V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin, and J. S. Chung, Journal of Materials Chemistry 21 , 3371 (2011).
B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Publications, 1976).
C. Wu and S. Zhou, Macromolecules 29 , 1574 (1996).
F. Horkay, P. J. Basser, A.-M. Hecht, and E. Geissler, The Journal of Chemical Physics 128 , 135103 (2008).

下載圖示
QR CODE