簡易檢索 / 詳目顯示

研究生: 莫艾奇
Mulla, Aziz Jabir
論文名稱: 疣狀鹿角珊瑚(Pocillopora verrucosa)複合種群的族群生態學
Population ecology of the Pocillopora verrucosa species complex
指導教授: 野澤洋耕
Nozawa, Yoko
口試委員: 湯森林
Tang, Sen-Lin
町田龍二
Machida, Ryuji
單偉彌
Denis, Vianney
王慧瑜
Wang, Hui-Yu
野澤洋耕
Nozawa, Yoko
口試日期: 2022/04/08
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 97
英文關鍵詞: Coral, Ecology, Larvae, Recovery, Demography
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200690
論文種類: 學術論文
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Population ecology is the study of populations in relation to the environment that includes the influences on population structure, health and density. For centuries it has provided a means of evaluating why and how populations change over time, why some go extinct and why others flourish. However, we still lack critical demographic information on specific foundational species, especially when it comes to corals, that promote the resilience of coral reefs worldwide. In this Ph.D. study, I explore mechanisms that support the survival of the Pocillopora verrucosa species complex, an abundant group of coral species in the Indo-Pacific. I examine abiotic factors on the larvae of P. verrucosa during dispersal (Chapter 2), use long-term monitoring and mathematical modelling to exemplify ecosystem resilience (Chapter 3) and reveal the demographic processes that drive population growth (Chapter 4).
Our results from Chapter 2 show that behaviour can have profound consequences for the dispersal potential of marine sessile organisms. I show that larvae of P. verrucosa are photo-sensitive and use this ability to dwell at the surface after spawning. Other coral species tested showed no preference towards or away from the light source, possibly using other mechanisms to regulate their vertical positioning. This reaction was consistently observed both in the laboratory at different light intensities and in the field at various depths. I hypothesise that photo-movement may have some influence on the wide geographical distribution of P. verrucosa.
In Chapter 3, I explore Pocillopora populations in recovery in Lanyu, Taiwan after a catastrophic disturbance in 2009. I monitored individual colonies over a 9-year period (2012-2020), tracking growth, survival and reproduction. I used Integral Projection Models (IPMs) to extract demographic traits that drive population recovery following a disturbance. Our results exemplified resilience as the population in later years was able to absorb recurrent disturbances and continue on the trajectory of recovery. I show it is underlying mechanisms such as the transition of smaller immature individuals to sexually mature adults that ensure the progression of the population. Our results deepen our knowledge of the value of both empirical and theoretical methods to explore recovery of corals.
In Chapter 4, I scrutinized the demographic traits associated with Pocillopora populations that regulate and facilitate population growth. I discovered, to our best knowledge, the first clear evidence of self-thinning of a coral population, a law in ecology whereby the number of individuals (per unit area) decreases as average size increases over time. I highlighted processes that drive this phenomena concluding that density-dependent recruitment is exerting pressure on the population to shrink in number of individuals. Our understanding what factors regulate population growth of foundational organisms is essential for future predictions of coral reefs.
Further research is necessary to explore the recovery potential of coral reefs. From reproduction to population dynamics to interdisciplinary science, population ecology has a place in the 21st century and can help to address new questions arising due to anthropogenic climate change. This Ph.D. study shows that mechanisms underpinning the survival of foundational organisms offer insight into how coral reefs will look in the future under more pressured environmental change.

ACKNOWLEDGEMENTS…………………………………………………i ABSTRACT………………………………………………………………………ii TABLE OF CONTENTS………………………………………………….…iv LIST OF TABLES……………………………………………………………...vi LIST OF FIGURES……………………………………………………………vii Chapter 1 – General Introduction 1.1 A history of population ecology……………………………………………………..………..1 1.2 Modern population ecology…………………………………………………………………...1 1.3 Lifecycle of a coral……………………………………………………………………………2 1.4 Reproduction, dispersal and connectivity……………………………………………..………3 1.5 Population dynamics and drivers of change…………………………………………...……...3 1.6 Demographic processes during recovery……………………………………………...………4 1.7 Pocillopora species complex………………………………………………………...………..5 1.8 Objectives……………………………………………………………………………………..6 1.9 Thesis outline………………………………………………………………………………….6 Figures……………………………………………………………………………….…………….7 Chapter 2 – Photo-movement of coral larvae influences vertical positioning in the ocean 2.1 Abstract………………………………………………………………………………………..8 2.2 Introduction……………………………………………………………………………………8 2.3 Materials and Methods……………………………………………………………………….11 2.3.1 Coral colony collection and larval rearing…………………………………………11 2.3.2 Laboratory experiments……………………………………………………………12 2.3.3 Field experiment…………………………………………………………………...14 2.3.4 Data analysis……………………………………………………………………….15 2.4 Results………………………………………………………………………………………..15 2.4.1 Laboratory experiments……………………………………………………………15 2.4.2 Field experiment…………………………………………………………………...17 2.5 Discussion……………………………………………………………………………………17 Acknowledgements………………………………………………………………………………21 Figures……………………………………………………………………………………………22 Supplementary Materials………………………………………………………………………...27 Chapter 3 – Revealing cryptic demographic drivers of recovery in coral populations 3.1 Abstract………………………………………………………………………………………31 3.2 Introduction…………………………………………………………………………………..32 3.3 Materials and Methods……………………………………………………………………….35 3.3.1 Data collection……………………………………………………………………..35 3.3.2 Measurement of demographic vital rates…………………………………………..36 3.3.3 Integral projection models…………………………………………………………39 3.4 Results………………………………………………………………………………………..41 3.5 Discussion……………………………………………………………………………………42 Acknowledgements………………………………………………………………………………48 Tables…………………………………………………………………………………………….49 Figures……………………………………………………………………………………………50 Supplementary Materials………………………………………………………………………...54 Chapter 4 – Self-thinning and density-dependence in recovering coral populations 4.1 Abstract………………………………………………………………………………………59 4.2 Introduction…………………………………………………………………………………..60 4.3 Materials and Methods……………………………………………………………………….62 4.3.1 Coral dynamics…………………………………………………………………….62 4.3.2 Data Analysis………………………………………………………………………63 4.4 Results………………………………………………………………………………………..64 4.5 Discussion……………………………………………………………………………………65 Acknowledgements………………………………………………………………………………69 Tables…………………………………………………………………………………………….70 Figures……………………………………………………………………………………………71 Chapter 5 – General Discussion 5.1 Summary of findings…………………………………………………………………………76 5.1.1 Dispersal and behaviour of larvae………………………………………………….76 5.1.2 Drivers of recovery………………………………………………………………...77 5.1.3 Hidden demography………………………………………………………………..77 5.2 Synthesis and future direction………………………………………………………………..78 References………………………………………………………………………………………..79

Abelson, A., Olinky, R. & S. Gaines. (2005). Coral recruitment to the reefs of Eilat, Red Sea: temporal and spatial variation, and possible effects of anthropogenic disturbances. Mar. Poll. Bull. 50, 576-582.

Adamska, M. et al. (2007). Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning. PLoS ONE 10 e1031
Adjeroud, M., Kayal, M., & Penin, L. (2017) Importance of Recruitment Processes in the Dynamics and Resilience of Coral Reef Assemblages. In: Rossi S., Bramanti L., Gori A., Orejas C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_12
Adjeroud, M., Kayal, M., Iborra-Cantonnet, C. et al. (2018). Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci Rep 8, 9680

Adjeroud, M., Michonneau, F., Edmunds, P.J., Chancerelle, Y., Lison de Loma, T., Penin, L., Thibaut, L., Vidal-Dupiol, J., Salvat, B. & Galzin, R. (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South-Central Pacific reef. Coral Reefs, 28, 775–780

Aihara, Y. et al. (2019). Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl. Acad. Sci. USA 116, 2118-2123

Ainsworth, T.D. & Hoegh-Guldberg, O. (2008). Cellular processes of bleaching in the Mediterranean coral Oculina patagonica. Coral Reefs, 27, 593-597

Angel, M.V. & Pugh, P.R. (2000). Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic. Hydrobiologia 440, 161-179

Arai, I. et al. (1993). Lipid composition of positively buoyant eggs of reef building corals. Coral Reefs 12, 71-75
Babcock, R.C. (1991). Comparative demography of three species of sderactinian corals using age- and size-dependent clas- sifications. Ecol Monogr, 61, 225-244
Baker, A., Starger, C., McClanahan, T.R., & Glynn, P.W. (2004). Corals' adaptive response to climate change. Nature, 430, 741

Barkley, H.C., Cohen, A.L., Mollica, N.R. et al. (2018). Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun Biol, 1, 177

Bellwood, D.R., Hoey, A.S., & Hughes, T.P. (2012). Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc. R. Soc. B. 279, 1621-1629

Ben-Hasan, A. & Christensen, V. (2019). Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research. Global Ecology and Conservation. 17, e00556

Bouwmeester, J., Berumen, M.L. & Baird, A.H. (2011). Daytime broadcast spawning of Pocillopora verrucosa on coral reefs of the central Red Sea. Galaxea Journal of Coral Reef Studies 13, 23-24

Bramanti, L. & Edmunds, P.J. (2016). Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs 35, 543-553

Brown, B.E. & Dunne, R.P. (1988). The Environmental Impact of Coral Mining on Coral Reefs in the Maldives. Environmental Conservation 15, 159-165

Burgess, H.R. (2011) Integral projection models and analysis of patch dynamics of the reef building coral Montastraea annularis. PhD Thesis, Department of Mathematics, University of Exeter, UK
Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J., & Edmunds, P. J. (2021). Response diversity in corals: Hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology, 102(6)

Calders, K., Adams, J., Armston. J., Bartholomeus, H., Bauwens, S., Bentley, L.P., Chave, J., Danson, M., Demol, M., Disney, M., Gaulton, R., Krishna, S.M., & Shaun, M. (2020). Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sensing of Environment, 251, 112102

Canadell, J.G., & Raupach, M.R. (2008). Managing Forests for Climate Change Mitigation. Science, 320, 1456-1457

Cant, J., Salguero-Gômez, S., Kim, S.W., Sims, C.A., Sommer, B., Brooks, M., Malcolm, H.A., Pandolfi, J.M., & Beger, M. (2021). The projected degradation of subtropical coral assemblages by recurrent thermal stress. Journal of Animal Ecology, 90(1), 233-247

Chalmandrier, L., Hartig, F., Laughlin, D.C. et al. (2021) Linking functional traits and demography to model species-rich communities. Nat. Commun. 12, 2724

Chancerelle, Y. (2000). Me´thodes d’ estimation des surfaces de´veloppe´es de coraux scle´ractiniaires a` l’e´chelle d’une colonie ou d’un peuplement. Oceanol Acta, 23:211–219. doi:10.1016/S0399- 1784(00)00125-0

Cohen, W.B., Yang, Z.Q., Stehman, S.V., Schroeder, T.A., Bell, D.M., Masek, J.G., Huang, C.Q., & Meigs, G.W. (2016). Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For. Ecol. Manag. 360, 242 252

Connell, J. H., Hughes, T. P., & Wallace, C. C. (1997). A 30-Year Study of Coral Abundance, Recruitment, and Disturbance at Several Scales in Space and Time. Ecological Monographs, 67(4), 461–488
Connell, J.H., Hughes, T.P., Wallace, C.C., Tanner, J.E., Harms, K.E., & Kerr, A.M. (2004). A long-term study of competition and diversity of corals. Ecological Monographs, 74(2), 179-210
Coulson, T. (2012). Integral projections models, their construction and use in posing hypotheses in ecology. Oikos. 121, 1337–1350

Courtney, T.A., Barnes, B.B., Chollett, I., Elahi, R., Gross, K., et al. (2020). Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere, 11(4), e03066

Darling, E.S., McClanahan, T.R., & Côté I.M. (2013). Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940

De Palmas, S.D., Soto, D., Denis, V., Ho, M.J. & Chen, C.A. (2018). Molecular assessment of Pocillopora verrucosa (Scleractinia; Pocilloporidae) distribution along a depth gradient in Ludao, Taiwan. PeerJ 6, e5797
De Wolf, P. (1973). Ecological observations on the mechanisms of dispersal of barnacle larvae during planktonic life and settling. Netherlands Journal of Sea Research 6, 1-129
Depczynski, M., Gilmour, J.P., Ridgway, T. et al. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32, 233–238

Dornelas, M. (2010). Disturbance and change in biodiversity. Phil. Trans. R. Soc. B3653719-3727
Doropoulos, C., Bozec, Y.M., Gouezo, M., Priest, M.A., Thomson, D.P., Mumby, P.J., & Roff, G. Cryptic coral recruits as dormant 'seed banks': an unrecognised mechanism of rapid reef recovery. Ecology, 22:e3621
Doropoulos, C., Bozec, Y.M., Gouezo, M., Priest, MA., Thomson, D.P., Mumby, P.J., & Roff, G. (2021). Cryptic coral recruits as dormant 'seed banks': an unrecognised mechanism of rapid reef recovery. Ecology. e3621
Doropoulos, C., Roff, G., Visser, M., & Mumby, P.J. (2016). Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology, 98(2), 304-314

Eddy, T.D., Lam, V.W.Y., Reygondeau, G., Cisneros-Montemayor, A.M., Greer, K., Palomares, M.L.D., Bruno, J.F., Ota, Y., & Cheung, W.W.L. (2021). Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4, 9, 1278-1285.

Edmunds, P.J. (2021). Finding signals in the noise of coral recruitment. Coral Reefs, https://doi.org/10.1007/s00338-021-02204-9

Edmunds, P.J. & Burgess, S.C. (2016). Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2. J. Exp. Biol. 219, 3896-3906

Edmunds, P.J., & Lasker , H.R. (2019). Regulation of population size of arborescent octocorals on shallow Caribbean reefs. Mar. Ecol. Prog. Ser. 615, 1-14

Edmunds, P.J., Burgess, S.C., Putnam, H.M. et al. (2014). Evaluating the causal basis of ecological success within the scleractinia: an integral projection model approach. Mar. Biol. 161, 2719–2734

Edmunds, P.J., Leichter, J.J., Johnston, E.C., Tong, E.J. & Toonen, R.J. (2016). Ecological and genetic variation in reef‐building corals on four Society Islands. Limnology and Oceanography 61, 543-557

Edmunds, P.J., Nelson, H.R., & Bramanti, L. (2018). Density-dependence mediates coral assemblage structure. Ecology. 99(11), 2605-2613

Elahi, R., Sebens, K. P., & De Leo, G. A. (2016). Ocean warming and the demography of declines in coral body size. Mar. Ecol. Prog. Ser.

Ellner, S. P., Rees, M., Associate Editor: William F. Morris, & Editor: Donald L. DeAngelis. (2006). Integral Projection Models for Species with Complex Demography. The American Naturalist, 167(3), 410–428. https://doi.org/10.1086/499438

Ferrari, R., Figueira, W.F., Pratchett, M.S. Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S.S., Atwood, T.B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Sci Rep 7, 16737 (2017)

Filbee-Dexter, K., Feehan, C.J. & Scheibling, R.E. (2016). Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141-152

Forward, R.B. (1974). Negative phototaxis in crustacean larvae: Possible functional significance. J. Exp. Mar. Biol. Ecol. 16, 11-17

Foster, N.L., Box, S.J., & Mumby, P.J. (2008). Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Mar. Ecol. Prog. Ser. 367, 143–152

Galloway, T.S, Cole, M. & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology and Evolution, 1, 0116

Galor, O., & Weil, D.N. (2000). Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond. American Economic Review, 90(4), 806-828
Gardner, T., Cote, I., Gill, J., Grant, A., & Watkinson A. (2003). Long-Term Region-Wide Declines in Caribbean Corals. Science, 301(5635, 958-960

Gleason, D.F. & Hofmann, D.K. (2011). Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42-57

Graham, N.A.J., & Nash, K.L. (2013). The importance of structural complexity in coral reef ecosystems. Coral Reefs. 2013, 32(2), 315-326

Graham, N.A.J., Nash, K.L., & Kool, J.T. (2011). Coral reef recovery dynamics in a changing world. Coral Reefs, 30, 283–294
Grainger, T., Senthilnathan, A., Ke, P., Barbour, M., et al. (2022). An Empiricist’s Guide to Using Ecological Theory. The American Naturalist, 199(1)

Hall, T.E., Freedman, A.S., Roos, A., Edmunds, P.J., Carpenter, R.C., & Gross, K. (2020). Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecological Applications, 31(2), e02234

Hansen, M.C, Potapovr, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommereddy, A., Egorov, A., Chini, L., Justice, C.O., & Townshend., J.R.G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342 850–3

Harrison, P.L & Wallace, C.C. (1990). Ecosystems of the world: coral reefs Ch. 7 (Elsevier)

Harvey, B.J., Nash, K.L., Blanchard, J.L., & Edwards, D.P. (2018). Ecosystem-based management of coral reefs under climate change. Ecology and Evolution, 8(12), 6354-6368
Hata, T. et al. (2017). Coral larvae are poor swimmers and require fine-scale reef structure to settle. Scientific Reports 7 2249
Hays, G.C. (2003). A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia, 503, 163-170

Henríquez, C.A., Moreno, P.I., Lambert, F., & Alloway, B.V. (2021). The role of climate and disturbance regimes upon temperate rainforests during the Holocene: A stratigraphic perspective from Lago Fonk (∼40°S), northwestern Patagonia. Quaternary Science Reviews, 258

Hixon, M.A., & Carr, M.H. (1997). Synergistic Predation, Density Dependence, and Population Regulation in Marine Fish. Science, 277(5328), 946-949

Hock, K., Doropoulos, C., Gorton, R., Condie, S.A. & Mumby, P. (2019). Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nature Communications, 10, 3463

Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. (2017) Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158

Hoey, A.S. & Bellwood, D.R. (2009). Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems, 12, 1316-1328

Holbrook, S.J. et al. (2018). Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8, 7338

Holbrook, S.J., Adam, T.C., Edmunds, P.J., Schmitt, R.J., Carpenter, R.C., Brooks, A.J., Lenihan, H.S., & Briggs, C. J. Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8, 7338
Houk, P., Benavente, D., Iguel, J., Johnson, S., Okano, R. (2014). Coral Reef Disturbance and Recovery Dynamics Differ across Gradients of Localized Stressors in the Mariana Islands. PLoS ONE, 9(8), e105731.

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Chase, T. J., Dietzel, A., et al. (2019). Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390

Hughes, T.P. et al. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80-83

Hughes, T.P., Graham, N.A., Jackson, J.B., Mumby, P.J., & Steneck, R.S. (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol. 25(11), 633-42

Idjadi, J.A., Lee, S.C., Bruno, J.F., Precht, W.F., Allen-Requa, L., & Edmunds, P.J. (2006). Rapid phase-shift reversal on a Jamaican coral reef. Coral Reefs, 25, 209-211

Isbell, F. (2010). Causes and Consequences of Biodiversity Declines. Nature Education Knowledge, 3(10), 54

Jékely, G. (2009). Evolution of phototaxis. Phil Trans R Soc B 364

Jékley, G. et al. (2008). Mechanism of phototaxis in marine zooplankton. Nature 456, 395-399

Johnston, E.C., Forsman, Z.H., & Toonen, R.J. (2018). A simple molecular technique for distinguishing species reveals frequent misidentification of Hawaiian corals in the genus Pocillopora. PeerJ, 6:e4355
Jones, H.P., & Schmitz, O.J. (2009). Rapid recovery of damaged ecosystems. PLoS One, https://doi.org/10.1371/journal.pone.0005653
Karlson, R. H., & L. E. Hurd. (1993). Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs, 12, 117-125

Karlson., R.H. (1999). Dynamics of coral communities. Kluwer, Dordrecht

Katsuki, T. & Greenspan, R.J. (2013). Jellyfish nervous systems. Current Biology 23, R592

Kawaguti, S. (1941). Tropisms of coral planulae, considered as a factor of distribution of the reefs. Palao Crop Biof Stud 2, 319-328
Kayal, M., Lenihan, H.S., Brooks, A.J., Holbrook, S.J., Schmitt, R.J., & Kendall, B.E. (2018). Predicting coral community recovery using multi-species population dynamics models. Ecology Letters, 21(12), 1790-1799
Kendall, M.S. & Poti, M. (2014). Potential larval sources, destinations, and self-seeding in the Mariana Archipelago documented using ocean drifters. Journal of Oceanography, 70, 549-557
Kim, H.J., Yamade, T., Iwasaki, K., Marcial, H.S. & Hagiwara, A. (2019). Phototactic behavior of the marine harpacticoid copepod Tigriopus japonicus related to developmental stages under various light conditions. J. Exp. Mar. Biol. Ecol. 518, 151-183

Kuanui, P., Chanvich, S, Viyakarn, V., Omori, M., Fujita, T., & Lin, C. (2020). Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estu. Coast. Shelf Sci, 235, 106515

Kunstler, G., Falster, D., Coomes, D. et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204–207

Kuo, C.-Y., Meng, P.-J., Ho, P.-H., Wang, J.-T., Chen, J.-P., Chiu, Y.-W., Lin, H.-J., Chang, Y.-C., Fan, T.-Y., & Chen, C. A. (2011). Damage to the reefs of Siangjiao Bay marine protected area of Kenting National Park, southern Taiwan during typhoon Morakot. Zoological Studies, 1, 50

Ladd, M.C., Shantz, A.A., Nedimyer, K., & Burkepile, D.E. (2016). Density Dependence Drives Habitat Production and Survivorship of Acropora cervicornis Used for Restoration on a Caribbean Coral Reef. Front. Mar. Sci, 3, 261

Last, K.S., Hobbs, L., Berge, J., Brierley, A.S. & Cottier, F. (2016). Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter. Current Biology 26, 244-251

Leys, S.P. & Degnan, B.M. (2001). Cytological Basis of Photoresponsive Behavior in a Sponge Larva. The Biological Bulletin 201, 323-338

Li, B.L., Wu, H.I., & Zou, G. (2000). Self-thinning rule: a causal interpretation from ecological field theory. Ecological Modelling, 132, 167-173

Lin, C.H. & Nozawa, Y. (2017). Variability of spawning time (lunar day) in Acropora versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan. Coral Reefs 36, 1268-1278
Linaires, C., Coma, R., Garrabou, J., Díaz, D., & Zabala, M. (2008). Size Distribution, Density and Disturbance in Two Mediterranean Gorgonians: Paramuricea clavata and Eunicella singularis. Journal of Applied Ecology, 45(2), 688–699

López-Pérez, A., Calderón-Aguilera, L.E., Reyes-Bonilla, H., Carriquiry, J.D., Medina-Rosas, P., Cupul-Magaña, A.L., Herrero-Pérezrul, M.D., Hernández-Ramírez, H.A., Ahumada-Sempoal, M.A., Luna-Salguero, B.M. (2012). Coral communities and reefs from Guerrero, southern Mexican Pacific. Mar. Ecol, 33, 407–416
Loya, Y., Sakai, K., Yamazato, Y., Nakano, H., Dambali, R., & van Woesik, R. (2001). Coral bleaching: the winners and the losers. Ecology Letters, 4(2), 122-131
Madin, J.S., Hoogenboom, M.O., Connolly, S.R., Darling, E.S., Falster, D.S., Huang, D., Keith, S.A., Mizerek, T., Pandolfi, J.M., Putnam, H.M., & Baird, A.H. (2016) A Trait-Based Approach to Advance Coral Reef Science. Trends Ecol. Evol. 31(6), 419-428

Mann, R. (1986). Sampling of bivalve larvae. North Pacific workshop on stock assessment and management of invertebrates (ed. Jamieson, G. S. and Bourne, N.) Can. Spec. Publ. Rish. Aquat. Sci. 92, 107–116

Marine, G, Yimnang, G., Fabricius, K., Dawnette, O., Geory, M., Victor, N., Eric, W., Harrison, P., & Doropoulos, C. (2019). Drivers of recovery and reassembly of coral reef communities. Proc. R. Soc. B. 286

Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Coldwell, R.K., Fuhrman, J.A., Green, J.L, et al. (2006). Microbial biogeography: putting micoorganisms on the map. Nature Reviews Microbiology, 4, 102-112

McWilliam, M., Pratchett, M.S., Hoogenboom, M.O., Hughes, T.P. (2020). Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B. 287, 20192628

Mercado-Molina, A.E., Sabat, M., & Hernández-Delgado, E.A. (2020). Chapter Three - Population dynamics of diseased corals: Effects of a Shut Down Reaction outbreak in Puerto Rican Acropora cervicornis. Advances in Marine Biology. 87(1), 61-82
Merow, C., Dahlgren, J.P., Metcalf, J., Childs, D., Evans, E.K., et al. (2013). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99-110.
Metcalf, J., McMahon, S., Salguero-Gómez, R., & Jongejans, E. IPMpack: an R package for integral projection models. Methods in Ecology and Evolution, 4(2), 195-200
Metcalf. J., Ellner, S., Childs, S., Salguero-Gómez, R., Merow, C., McMahon, S., Jongejans, E., & Rees, M. Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 6(9)

Mora, C., Graham, N.A.J. & Nyström, M. (2016). Ecological limitations to the resilience of coral reefs. Coral Reefs 35, 1271–1280
Mulla, A.J., Lin, C-H., Takahashi, S., & Nozawa, Y. (2021). Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs, 40, 1297–1306

Nelson, H.M., & Bramanti, L. (2020). From Trees to Octocorals: The Role of Self-Thinning and Shading in Underwater Animal Forests.

Newman, E.A. (2019). Disturbance Ecology in the Anthropocene. Front. Ecol. Evol, 10.

Nozawa, Y., Lin, C-H., Chung, A-C. (2013). Bathymetric Variation in Recruitment and Relative Importance of Pre- and Post-Settlement Processes in Coral Assemblages at Lyudao (Green Island), Taiwan. PLoS ONE, 8(11), e81474

Olmsted, James L. (2011). The Butterfly Effect: Conservation Easements, Climate Change, and Invasive Species. Boston College Environmental Affairs Law Review, 38(1)

Pandolfi, J.M., Bradbury, R.H., Sala, E., Hughes, T.P., Bjorndal, K.A., Cooke, R.G., McArdle, D., McClenachan, L., Newman, M.J., Paredes, G., Warner, R.R., & Jackson, J.B. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science. 301(5635), 955-8

Paris, C.B., Chérubin, L.M. & Cowen, R.K. (2007). Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar. Ecol. Prog. Ser. 347, 285-300

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42

Peres, C.A., Barlow, J., & Laurance, W.F. (2006). Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 21(5), 227-9

Pickett, S.T.A., & White, P.S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. AcademicPress, Orlando.

Pickett, S.T.A., Kolasa, J., Armesto, J., & Collins, S.L. (1989). The Ecological Concept of Disturbance and Its Expression at Various Hierarchical Levels. Oikos, 54, 2, 129-136

Pisapia, C., Burn, D. & Pratchett, M.S. (2019). Changes in the population and community structure of corals during recent disturbances (February 2016-October 2017) on Maldivian coral reefs. Sci Rep 9, 8402
Pratchett, M.S., McWilliam, M.J., & Riegl, B. (2020). Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs, 39, 783–793
Precoda, K., Baird, A.H., Madsen, A., Mizerek, T., Sommer, B., Su, S.N., et al. (2018). How does a widespread reef coral maintain a population in an isolated environment? Mar. Ecol. Prog. Ser., 594, 85–94.

Price, J.F., Weller, R.A. & Schudlich, R.R. (1987). Wind-Driven Ocean Currents and Ekman Transport. Science 238, 1534-1538

Primack, R.B., & Morrison, R.A. (2013). “Causes of extinction,” in Encyclopedia of Biodiversity, 2nd Edn, ed. S. A. Levin (Cambridge, MA: Academic Press), 401–412

Raimondi, P.T. & Morse, A.N.C. (2000). The consequences of complex larval behavior in a coral. Ecology 81, 3193-3211

Ramula, S., Reese, M., & Buckley, Y.M. (2009). Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. Journal of Applied Ecology, 46, 1048-1053

Reynolds, C.S., Padisák, J., & Sommer, U. (1993). Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia, 249, 183-188
Ribas-Deulofeu, L., Denis ,V., Château, P.A., Chen, C.A. (2021). Impacts of heat stress and storm events on the benthic communities of Kenting National Park (Taiwan). PeerJ. 9:e11744
Richier, S. et al. (2008). Depth-dependant response to light of the reef building coral, Pocillopora verrucosa: Implication of oxidative stress. J. Exp. Mar. Biol. Ecol. 357, 48-56

Richmond, R.H. (1997). Reproduction and recruitment in corals: critical links in the persistence of reefs. C. Birkeland (Ed.), Life and Death of Coral Reefs, Chapman & Hall, New York, pp. 175-197

Ridgway, T., Hoegh-Guldberg, O. & Ayre, D. (2001). Panmixia in Pocillopora verrucosa from South Africa. Marine Biology 139, 175-181
Riegl, B., Cavalcante, G., Bauman, A.G., Feary, D.A., Steiner, S., & Purkis, S. (2017). Demographic Mechanisms of Reef Coral Species Winnowing from Communities under Increased Environmental Stress. Front. Mar. Sci. 4
Riegl, B., Johnston, M., Purkis, S., Howells, E., Burt, J., Steiner, S.C.C., Sheppard, C.R.C., & Bauman, A. (2018). Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem-engineering coral, linked to rising temperature. Global Change Biology, 24(6), 2447-2462
Rivest, E.B., Chen, C-S., Fan, T-Y., Li, H-H. & Hofmann, G.E. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario. Proc. R. Soc. B. 284

Rockwood, L.L., 2015. Introduction to population ecology. John Wiley & Sons
Savage, C. (2019). Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci Rep, 9, 4284
Sawall, Y., Al-Sofyani, A., Banguera-Hinestroza, E. & Voolstra, C.R. (2014). Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea. PLoS ONE 9, e103179
Scavo-Lord, K., Lesneski, K.C., Bengtsson, Z.A., Kuhn, K.M., Madin, J., Cheung, B., Ewa, R., Taylor, J.F., Burmester, E.M., & Morey, J. (2020). Multi-year viability of a reef coral population living on mangrove roots suggests an important role for mangroves in the broader habitat mosaic of corals. Frontiers in Marine Science, 7, 377
Scheffer, M., Carpenter, S., Foley, J. et al. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596
Schneider, C.A., Rasband, W.S., & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 9(7):671-5

Schneider, C.A., Rasband, W.S., & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 9(7), 671-675

Shea, K., Roxburgh, S.H., & Rauschert, E.S.J. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7, 491-508

Shirley, S.M. & Shirley, T.C. (1988). Behavior of red king crab larvae: Phototaxis, geotaxis and rheotaxis. Marine Behaviour and Physiology 13, 369-388

Shlesinger T, Loya Y. (2019) Breakdown in spawning synchrony: A silent threat to coral persistence. Science, 6;365(6457), 1002-1007. doi: 10.1126/science.aax0110. PMID: 31488683.
Shlesinger, T., & van Woesik, R. (2021). Different population trajectories of two reef-building corals with similar life-history traits. Journal of Animal Ecology, 90(5), 1379-1389
Shriver, R.K., Andrews, C.M., Arkle, R.S., Barnard, D.M., Duniway, M.C., Germino, M.J., Pilliod, D.S., Pyke, D.A., Welty, J.L., & Bradford, J.B. (2019). Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecology Letters, 22(9), 1357-1366

Soto, D., De Palmas, S.D., Ho, M.J., Denis, V. & Chen, C.A. (2018). Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS ONE 13, e0202586

Sousa, W.P. (1984). The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353-391
Speare, K.E., Adam, T.C., Winslow, E.M., Lenihan, H.S., & Burkepile, D.E. (2021). Size-dependent mortality of corals during marine heatwave erodes recovery capacity of a coral reef. Global Change Biology, 28, 4, 1342-1358
Steneck, R.S., Paris, C.B., Arnold, S.N., Ablan-Lagman, M.C., Alcala, A.C., Butler, M.J., McCook, L.J., Russ, G.R. & Sale, P.F. (2009). Thinking and managing outside the box: coalescing connectivity netwroks to build region-wide resilience in coral reef ecosystems. Coral Reefs, 28 367-378
Stimson, J. (2018). Recovery of coral cover in records spanning 44 yr for reefs in Kāne‘ohe Bay, Oa‘hu, Hawai‘i. Coral reefs, 37, 55-69
Stuart-Smith, R.D., Brown, C.J., Ceccarelli, D.M. & Edgar, G.J. (2018). Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature, 560, 92-96
Szmant, A.M. & Meadows, M.G. (2006). Developmental changes in coral larval buoyancy and vertical swimming behavior: implications for dispersal and connectivity. Proc. 10th Int. Coral Reef Symp. 1, 431-437
Tang, T.Y., Hsueh, Y., Yang, Y.J. & Ma, J.C., 1999. Continental slope of Taiwan and migration of the Kuroshio. Continental Shelf Research, 20, 349-371
Tay, Y.C., Todd, P.A., Rosshaug, P.S. & Chou, L.M. (2012). Simulating the transport of broadcast coral larvae among the Southern Islands of Singapore. Aquatic Biology 15, 283-297
Thorson, G. (1964). Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1, 167-208
Tkachenko, K.S., Wu, B.J., Fang, L.S., & Fan, T.Y. (2007). Dynamics of a coral reef community after mass mortality of branching Acropora corals and an outbreak of anemones. Mar Biol, 151, 185–194

Turchin, P. (2003). Does population ecology have general laws? Oikos, 94(1)

Van der Stocken, T. & Menemenlis, D. (2017). Modelling mangrove propagule dispersal trajectories using high‐resolution estimates of ocean surface winds and currents. Biotropica. 49, 472-481

Verde, E.A. & McCloskey, L.R. (1998). Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar. Ecol. Prog. Ser. 168, 147-162

Vermeij, M.J.A., & Sandin, S.A. (2008). Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology (in press)
Veron, J.E.N. (2000). Corals of the World 3, Australia Institute of Marine Science Australia, Townsville

Vieilledent, G., Grinand, C., Rakotomalala, F.A., Ranaivosoa, R., Rakotoarijaona, J.R., Allnutt, T.F., & Achard, F. (2018). Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation, 6(7), e22017

Vize, P.D. (2009). Transcriptome Analysis of the Circadian Regulatory Network in the Coral Acropora millepora. The Biological Bulletin 216, 131-137

Wales, W. (1984). Photic behaviour and vertical migration in herring larvae. Marine Behaviour and Physiology 11, 139-156

Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J.R., Richter, D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, Grinevald, Odada, E., Oreskes,. & Wolfe, A.P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269).

Weinstock, J.B., Morello, S.L., Conlon, L.M., Xue, H. & Yund, P.O. (2018). Tidal shifts in the vertical distribution of bivalve larvae: Vertical advection vs. active behaviour. Limnology and Oceanography 63, 2681-2694

West, J.M., & Salm, R.V. (2003). Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conservation Biology, 17, 4, 956-967

West, J.M., & Salm, R.V. (2003). Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conservation Biology, 17, 4, 956-967

Westoby, M. (1984). The self-thinning rule. Advances in Ecological Research, 14, 167-225
Wheeler, J.D. et al. (2017). Light stimulates swimming behavior of larval eastern oysters
Wild, C., Hoegh-Guldberg, O., Naumann, M.S., Florencia, C.M., Ateweberhan, M., Fitt, W.K., Iglesias, R., Palmer, C., Bythell, J.C., Ortiz, J., Loya, Y., & van Woesik, R. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research, 62, 205-215
Woolridge, S.A. (2013). Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 10, 1647–1658
Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions: intraspecific competition among higher plants XI. J. Biol. (Osaka City Univ.), 14, 107-129.

Zhu, J., Jiang, L., Zhang, Y., Jiang, Y., Tao, J., Tian, L., Zhang, T., & Xi, Y. (2015). Below-ground competition drives the self-thinning process of Stipa purpurea populations in northern Tibet. Journal of Vegetation Science, 26(1), 166-174

下載圖示
QR CODE