簡易檢索 / 詳目顯示

研究生: 蔡尹廷
論文名稱: 特徵選擇與擷取對辨識娃娃臉之研究
A study on feature selection and extraction for babyface recognition
指導教授: 葉梅珍
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 25
中文關鍵詞: 特徵選擇特徵擷取卷積神經網路
英文關鍵詞: feature selection, feature extraction, convolutional neural networks
論文種類: 學術論文
相關次數: 點閱:313下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在社交場合中,娃娃臉這種臉部特徵在外表上會具有吸引力而且給人友善的感覺。人們可以很簡單的去判斷一個人是否有娃娃臉,然而,構成娃娃臉的特質十分模糊。在我們的論文中,將去分析人臉上的特徵,並挑選出哪些特徵對於判斷一個人是否具有娃娃臉是有幫助的。我們使用特徵選擇(Feature selection)方法去挑選出最佳的特徵組合以及使用卷積神經網路(Convolutional Neural Network)去自動的學習出特徵來判斷是否為娃娃臉。在實驗當中,我們比較使用心理學的特徵、特徵選擇以及卷積神經網路三種方法的差別,在使用卷積神經網路方法的結果會比其他兩種方法來得更好。

    Babyface is a type of face that is usually attractive and friendly in appearance. People can recognize this special face easily. However, the components that compose a babyface remain unclear. In this paper, we analyze the features in a human face and determine which features are useful for determining a babyface. In particular, we use feature selection methods to choose the best combination in discriminative capability and the convolutional neural networks to automatically learn the features. We compare our result with the psychological studies and showed that the features obtained by using the convolutional neural networks technique outperform the other methods under testing.

    第一章 簡介 1 1.1 研究背景 1 1.2 研究目的 2 1.3 文章架構 3 第二章 文獻探討 4 第三章 方法 6 3.1. 心理學臉部特徵 6 3.2. 特徵選擇 8 3.3. 局部二值模式 9 3.4. 特徵擷取 10 3.4.1. 神經網路 10 3.4.2. 卷積神經網路 12 3.5. 建立娃娃臉訓練模型 14 第四章 實驗結果與分析 15 4.1. 資料庫收集 15 4.2. 實驗方式 16 4.3. 實驗結果分析 17 第五章 結論與未來工作 20 5.1. 結論 20 參考著作 21

    [1] Berry, Diane S., McArthur, Leslie Z, “Some components and consequences of a babyface.” Journal of Personality and Social Psychology, vol. 48(2), 1985.
    [2] Huizhong Chen, Gallagher, A.C., Girod, B., “What’s in a name? First names as facial attributes.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
    [3] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding for image classification.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
    [4] W. Deng, J. Hu, J. Guo, “Extended SRC: Undersampled face recognition via intraclass variant dictionary.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34(9), 2012.
    [5] Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S., “Sparse and low-rank matrix decompositions.” In Proceedings of the Annual Allerton Conference on Communication, Control, and Computing, 2009

    [6] Emmanuel J. Candès, X. Li, Y. Ma, John Wright, “Robust principal component analysis?” Journal of the ACM (JACM), vol. 58(3), May, 2011.
    [7] Z. Lin, Arvind Ganesh, J. Wright, L. Wu, M. Chen, Y. Ma, “Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix.” International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, December, 2009.
    [8] C. Chang and C. Lin. “Libsvm: a library for support vector machines.” ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.
    [9] Leslie Zebrowitz-McArthur, Joann M. Montepare, “Contributions of a babyface and a childlink voice to impressions of Moving and Talking Faces.” Journal of Nonverbal Behavior, vol. 13(3), pp 189-203, 1989.
    [10] Lorenz, K., “Die angeborenen formen moglicher erfahrung [The inate forms of potential experience].” Zietschrift fur Tierpsychologie, 1943.
    [11] Sterngianz, S. H., Gray, J. L., and Murakami, M., “Adult preferences for infantile facial features: An ethological approach.” Animal Behavior, 25, 108-115., 1977.

    [12] Brooks, V., Hochberg, J., “A psychophysical study of cuteness.” Perception and Psychophysics, 1960.
    [13] Hildebrant, K. A., Fitzgerald, H. E., “Facial feature determinants of perceived infant attractiveness.” Infant Behavior and Development, 2, 329-339, 1979.
    [14] X. Xiong and F. De la Torre, “Supervised descent method and its application to face alignment.” In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
    [15] Yuan X.M. and Yang J. F., “Sparse and low-rank matrix decomposition via alternating direction methods”, Pacific Journal of Optimization, 9(1), 167–180, 2013.
    [16] Michael McCoy, Joel A. Tropp, “Two proposals for robust PCA using semidefinite programming”, Electron. J. Statist., vol. 5, 2011.
    [17] McArthur, L. Z., “Judging a book by its cover. A cognitive analysis of the relationship between physical appearance and stereotyping.” Cognitive Social Psychology, pp. 149-211, 1982.
    [18] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and Simile Classifiers for Face Verification.” In Proceedings of IEEE International Conference on Computer Vision (ICCV), Oct, 2009.
    [19] Face.com
    http://face.com/
    [20] Cootes, T. F., Edwards, G. J., Taylor, C. J. “Active appearance models”. ECCV, 1998.
    [21] Unsupervised Feature Learning and Deep Learning(UFLDL)
    http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
    [22] Caffe
    http://caffe.berkeleyvision.org/
    [23] Chen, Ke, et al. “Cumulative attribute space for age and crowd density estimation.” In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
    [24] OpenCV
    http://opencv.org/
    [25] Imagenet
    http://www.image-net.org/
    [26] Brown, Gavin, et al. "Conditional likelihood maximisation: a unifying framework for information theoretic feature selection." The Journal of Machine Learning Research 13.1 pp.27-66 , 2012.

    [27] Donahue, Jeff, et al. "Decaf: A deep convolutional activation feature for generic visual recognition." arXiv preprint arXiv:1310.1531, 2013.

    QR CODE