簡易檢索 / 詳目顯示

研究生: 黃敬賀
Huang, Jing-He
論文名稱: 奈米氧化鐵薄膜應用於電抗式微小化氣相層析偵測器之研製
A Reactance Type Micro Gas Chromatographic Detector Employing nano-Iron Oxide Film
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 林震煌
Lin, Cheng-Huang
劉茂煌
Liu, Mao-Huang
口試日期: 2021/06/29
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 奈米氧化鐵電抗氣體偵測器揮發性有機氣體磁性物質
英文關鍵詞: iron oxide nanoparticles, reactance, gas detector, Volatile Organic Compounds, magnetic substances
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100698
論文種類: 學術論文
相關次數: 點閱:86下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於奈米氧化鐵特有的磁性性質,將其作為自製偵測器之材料,並分析其電氣參數,研究其在高頻時量測不同種類的揮發性有機氣體VOCs之電抗變化現象。在奈米氧化鐵粒子表面修飾油酸分子,使其能以穩定的膠體溶液形式存在,塗覆在微製程加工之叉指電極上,後經加工組合成氣相層析偵測器,並串接於桌上型氣相層析儀之後,對11種有機氣體進行量測,結果均顯示良好的線性關係(R2>0.99)、靈敏度與再現性。根據實驗結果,本研究之奈米氧化鐵薄膜偵測器對高沸點、高極性的化合物有較佳的感測靈敏度,以anisole為例,其偵測下限甚至能達20 ng之下,並也從研究中發現自製偵測器有利於偵測鹵烷類化合物。
    此外,將奈米氧化鐵替換成以十六烷硫醇修飾之奈米銀,以相同的製作手法製作偵測器,並與之相互比較,結果顯示奈米氧化鐵的訊號強度相較於奈米銀大上數倍,顯現出奈米氧化鐵之獨特性。

    Based on the magnetic properties of nano-iron oxide, this study uses it as a material for home-made detectors, and its electrical parameters are analyzed, and its reactance to different kinds of volatile organic gas (VOCs) is measured at high frequencies. The surface of iron oxide nanoparticle is modified with oleic acid so that they can exist in the form of stable colloidal solution, and then coated on the interdigital electrode(IDE) processed by micro-process, combined into a gas chromatography detector, which is connected in series with the desktop gas chromatograph(GC) to detect eleven organic gases, and the results all showed a good linear relationship (R2>0.99), sensitivity and reproducibility. According to the experimental results, the iron oxide nanofilm detector in this study has better sensing sensitivity for compounds with high boiling point and high polarity. Taking anisole as an example, its detection limit can even below 20 ng, and it is also found from the study that the home-made detector is beneficial to detect halogenated compounds.
    In addition, the iron oxide nanoparticle was replaced with silver nanoparticle modified with hexadecyl mercaptan and compared with each other by the same experiment method. The results showed that the signal intensity of the iron oxide nanoparticles was higher is several times larger than that of silver nanoparticle, showing the uniqueness of iron oxide nanoparticles.

    中文摘要 i Abstract ii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 奈米氧化鐵粒子合成 3 1.2.1 共沉澱法 4 1.2.2 水熱法 6 1.2.3 溶膠-凝膠法 7 1.2.4 微乳化法 8 1.3 奈米材料基本介紹 9 1.3.1 小尺寸效應 9 1.3.2 量子尺寸效應 10 1.3.3 表面效應 11 1.3.4 量子穿隧效應 12 1.4 磁性物質介紹 13 1.4.1 反磁性 14 1.4.2 順磁性 15 1.4.3 反鐵磁性 16 1.4.4 鐵磁性 17 1.4.5 陶鐵磁性 19 1.4.6 超順磁性(Superparamagnetism) 20 1.5 電阻、電容、電感、電抗等基本觀念 21 1.5.1 電阻 21 1.5.2 電感 22 1.5.3 電容 23 1.5.4 電抗 24 1.6 化學氣體偵測器之介紹 25 1.6.1 電阻式 25 1.6.2 電容式 27 1.7 研究目的 28 第二章 實驗部分 29 2.1 實驗藥品、器材與儀器設備 29 2.1.1 實驗藥品 29 2.1.2 實驗器材 31 2.1.3 儀器設備 32 2.2 奈米氧化鐵粒子之製備 34 2.3 奈米氧化鐵薄膜偵測器之製作過程 36 2.3.1 叉指電極之規格及清洗 36 2.3.2 自製偵測器之製作 36 2.3.3 奈米氧化鐵薄膜製作 38 2.4 感測系統及數據處理 39 2.4.1 感測系統之架設 39 2.4.2 LCR Meter數據 41 第三章 結果與討論 42 3.1 奈米氧化鐵粒子分析 42 3.2 實驗最佳化參數之探討 45 3.2.1 偵測器之最佳工作頻率 45 3.2.2 奈米氧化鐵薄膜的表面樣貌及厚度之分析 48 3.2.3 研究之儀器量測參數選擇 54 3.2.4 不同基板材料之叉指電極分析 58 3.2.5 載氣流速之影響 62 3.3 奈米氧化鐵薄膜在有機氣體下反應機制之探討 65 3.4 奈米氧化鐵粒子與油酸之比較 67 3.5 奈米氧化鐵薄膜偵測器之再現性測試 68 3.6 相同官能基氣體之比較分析 69 3.7 奈米氧化鐵薄膜偵測器之水氣偵測 73 3.8 奈米氧化鐵薄膜偵測器之氣體偵測 74 3.8.1 與火焰離子化偵測器(FID)之比較 74 3.8.2 奈米氧化鐵薄膜偵測器之混合氣體檢量線 76 第四章 結論 81 參考文獻 82

    1. 陳昱銓. 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立. 輔仁大學, 新北市, 2008.
    2. Wen, W., Progresses in Chemical Sensor. IntechOpen: 2016.
    3. 李昆峰; 高肇鴻; 陳錚誼; 趙啟民; 卓慧如; 林玉娟; Lee, K.-f.; Kao, C.-h.; Chen, C.-y.; Chau, C.-m.; Cho, H.-j.; Lin, Y.-j., 磁性奈米粒子於生醫領域之應用. 科儀新知 2006, 28卷 (1=153期), 頁61-69.
    4. Guardia, P.; Labarta, A.; Batlle, X., Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (2), 390-396.
    5. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 2008, 108 (6), 2064-2110.
    6. Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 2016, 9, 49-67.
    7. Gribanov, N. M.; Bibik, E. E.; Buzunov, O. V.; Naumov, V. N., Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. Journal of Magnetism and Magnetic Materials 1990, 85 (1), 7-10.
    8. Dheyab, M. A.; Aziz, A. A.; Jameel, M. S.; Noqta, O. A.; Khaniabadi, P. M.; Mehrdel, B., Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Scientific Reports 2020, 10 (1), 10793.
    9. Maity, D.; Agrawal, D. C., Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials 2007, 308 (1), 46-55.
    10. Khandhar, A. P.; Keselman, P.; Kemp, S. J.; Ferguson, R. M.; Goodwill, P. W.; Conolly, S. M.; Krishnan, K. M., Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 2017, 9 (3), 1299-1306.
    11. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72 (11), 4847-4854.
    12. Arshadi, S.; Moghaddam, J.; Eskandarian, M., LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory. Korean Journal of Chemical Engineering 2014, 31 (11), 2020-2026.
    13. Ozel, F.; Kockar, H.; Karaagac, O., Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size. Journal of Superconductivity and Novel Magnetism 2015, 28 (3), 823-829.
    14. Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 2002, 31 (4), 230-238.
    15. Gash, A. E.; Tillotson, T. M.; Satcher, J. H.; Poco, J. F.; Hrubesh, L. W.; Simpson, R. L., Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts. Chemistry of Materials 2001, 13 (3), 999-1007.
    16. Durães, L.; Costa, B. F. O.; Vasques, J.; Campos, J.; Portugal, A., Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Materials Letters 2005, 59 (7), 859-863.
    17. Parashar, M.; Shukla, V. K.; Singh, R., Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics 2020, 31 (5), 3729-3749.
    18. Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. A., Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 288 (1), 44-51.
    19. Lu, A.-H.; Salabas, E. L.; Schüth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition 2007, 46 (8), 1222-1244.
    20. Tavakoli, A.; Sohrabi, M.; Kargari, A., A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chemical Papers 2007, 61 (3), 151-170.
    21. 馬遠榮, 低維奈米材料. 科學發展月刊 2004, 382卷, 頁72-75.
    22. Yun, Y. L. Z., 材料物理學概論. 五南圖書出版公司: 2003.
    23. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司: 2005.
    24. 楊仲準, 量子尺寸效應於奈米超導金屬之研究. 物理雙月刊 2010, 32卷 (2期), 頁119-125.
    25. Hong, K.; Le, Q. V.; Kim, S. Y.; Jang, H. W., Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C 2018, 6 (9), 2189-2209.
    26. Klabunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D. G.; Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D., Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry. The Journal of Physical Chemistry 1996, 100 (30), 12142-12153.
    27. Piqueres, C. S. Theoretical and experimental study of electronic transport and structure in atomic-sized contacts. University of Alicante, Spain, 2013.
    28. 田民波, 磁性材料. 清华大学出版社: 2001.
    29. Scepka, T. Noninvasive control of magnetic state in ferromagnetic nanodots by Hall probe magnetometry. Slovak University of Technology in Bratislava, Slovensko, 2016.
    30. Kong, L. B.; Liu, L.; Yang, Z.; Li, S.; Zhang, T.; Wang, C., 15 - Theory of ferrimagnetism and ferrimagnetic metal oxides. In Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Stojanovic, B. D., Ed. Elsevier: 2018; pp 287-311.
    31. Poudel, C. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles. Oberlin college, Ohio, U.S. , 2014.
    32. Arora, A.; Kuch, W.; Noltimg, F., Optical and Electric Field Control of Magnetism. Universität Potsdam: 2018.
    33. Néel, M. L., Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 1948, 12 (3), 137-198.
    34. Koplovitz, G.; Leitus, G.; Ghosh, S.; Bloom, B. P.; Yochelis, S.; Rotem, D.; Vischio, F.; Striccoli, M.; Fanizza, E.; Naaman, R.; Waldeck, D. H.; Porath, D.; Paltiel, Y., Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small 2019, 15 (1), 1804557.
    35. 陳燕華, 神奇的奈米磁鐵礦. 科學發展月刊 2013, 482卷, 頁18-23.
    36. Bedanta, S.; Petracic, O.; Kleemann, W., Chapter 1 - Supermagnetism. In Handbook of Magnetic Materials, Buschow, K. H. J., Ed. Elsevier: 2015; Vol. 23, pp 1-83.
    37. Alexander, C. K.; Sadiku, M. N. O., Fundamentals of Electric Circuits. 3 ed.; McGraw-Hill: 2003.
    38. Czichos, H.; Saito, T.; Smith, L.; Saito, T.; Smith, L. E., Springer handbook of materials measurement methods. Springer
    Springer Berlin Heidelberg : Imprint: Springer: Germany
    Berlin, Heidelberg, 2006.
    39. Arshak, K.; Gaidan, I., Development of a novel gas sensor based on oxide thick films. Materials Science and Engineering: B 2005, 118 (1), 44-49.
    40. 楊力儼; 柯廷勳; 曾文甲; 曾文甲; Yang, L.-y.; Ken, T.-s.; Tseng, J. W.; Tseng, W. J., 固態氣體感測器介紹. 科儀新知 2019, 218卷, 頁12-25.
    41. 戴慶良; 劉茂誠; Dai, C.-l.; Liu, M.-c., CMOS MEMS氣體感測器. 科儀新知 2008, 30卷 (1=165期), 頁54-61.
    42. 吳仁彰; Wu, R.-j., 奈米材料應用於氣體感測器之發展. 科儀新知 2004, 26卷 (3=143期), 頁88-94.
    43. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R., Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10 (3), 2088-2106.
    44. Deng, Y., Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors. In Semiconducting Metal Oxides for Gas Sensing, Deng, Y., Ed. Springer Singapore: Singapore, 2019; pp 23-51.
    45. Bak, S.-Y.; Lee, J.; Kim, Y.; Lee, S.-H.; Woo, K.; Lee, S.; Yi, M., Sensitivity Improvement of Urchin-Like ZnO Nanostructures Using Two-Dimensional Electron Gas in MgZnO/ZnO. Sensors 2019, 19 (23), 5195.
    46. Mohseni Kiasari, N.; Soltanian, S.; Gholamkhass, B.; Servati, P., Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sensors and Actuators A: Physical 2012, 182, 101-105.
    47. Andrés, M. A.; Vijjapu, M. T.; Surya, S. G.; Shekhah, O.; Salama, K. N.; Serre, C.; Eddaoudi, M.; Roubeau, O.; Gascón, I., Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles. ACS Applied Materials & Interfaces 2020, 12 (3), 4155-4162.
    48. Yuan, H.; Tao, J.; Li, N.; Karmakar, A.; Tang, C.; Cai, H.; Pennycook, S. J.; Singh, N.; Zhao, D., On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie International Edition 2019, 58 (40), 14089-14094.
    49. Venditti, I.; Fratoddi, I.; Bearzotti, A., Self-assembled copolymeric nanoparticles as chemically interactive materials for humidity sensors. Nanotechnology 2010, 21 (35), 355502.
    50. Ishihara, T.; Matsubara, S., Capacitive Type Gas Sensors. Journal of Electroceramics 1998, 2 (4), 215-228.
    51. Ohira, S.-I.; Goto, K.; Toda, K.; Dasgupta, P. K., A Capacitance Sensor for Water: Trace Moisture Measurement in Gases and Organic Solvents. Analytical Chemistry 2012, 84 (20), 8891-8897.
    52. Bindra, P.; Hazra, A., Capacitive gas and vapor sensors using nanomaterials. Journal of Materials Science: Materials in Electronics 2018, 29 (8), 6129-6148.
    53. Pourteimoor, S.; Haratizadeh, H., Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature. Journal of Materials Science: Materials in Electronics 2017, 28 (24), 18529-18534.
    54. Umar, A.; Ibrahim, A. A.; Kumar, R.; Albargi, H.; Alsaiari, M. A.; Ahmed, F., Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sensors and Actuators B: Chemical 2021, 326, 128851.
    55. Zhang, L.; He, R.; Gu, H.-C., Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science 2006, 253 (5), 2611-2617.
    56. Kim, W.; Suh, C.-Y.; Cho, S.-W.; Roh, K.-M.; Kwon, H.; Song, K.; Shon, I.-J., A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta 2012, 94, 348-352.
    57. Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X., Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Engineering 2012, 27, 632-637.
    58. Alley, C. L.; Atwood, K. W., Electronic Engineering. Wiley: 1973.
    59. Kaiser, K. L., Electromagnetic Shielding. Taylor & Francis: 2005.
    60. Ashby, D.; Safari, a. O. R. M. C., Electrical Engineering 101, 3rd Edition. Newnes: 2011.
    61. Saeki, K.; Horiguchi, T., Oxidizing gas sensor with low concentration using complex impedance. Electronics and Communications in Japan 2018, 101 (9), 18-24.

    下載圖示
    QR CODE