研究生: |
張耀庭 Yao-Ting Chang |
---|---|
論文名稱: |
武術發勁動作之電腦模擬最佳化分析 Optimization of the martial arts 「Fa-Jin」 movement by computer simulation |
指導教授: |
張家豪
Chang, Jia-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 多體動力學 、多連桿 、衝量 、協調性 |
英文關鍵詞: | multi-body dynamics, multi-link, impulse, coordination |
論文種類: | 學術論文 |
相關次數: | 點閱:261 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用電腦模擬最佳化分析法,對武術發勁動作進行分析,探討在經過最佳化計算後所產生的人體發勁動作的變化。研究以三維動作分析系統進行實驗,收集一位武術教練定步雙按發勁動作的運動學資料。再以AnyBody Modeling System建構簡易之二維人體肢段模型,匯入實驗所得運動學資料驅動模型後,給定腕關節水平加速度總和最大作為目標函數,同時限制肌力活化總和最大值小於100%的最大肌力為邊界條件,進行最佳化計算,探討該名研究對象在最佳化後之發勁動作所產生的關節動作改變。研究發現,經過最佳化計算後,腕關節的水平速度與加速度在峰值都增加,模型在動作前期呈現身體前移的動作,腕關節在短暫停頓之後,動作後期出現下肢蹬伸與上身放長的動作,使腕關節再前移,主動施力矩總和的最大值增加。同時,最佳化之後也提升了關節動作的協調程度。AnyBody軟體能經過最佳化計算產生數學上的最佳動作,然而此動作的可行性還需要受試者的實際驗證,此外,本研究僅從二維模型進行探討,若可以三維模型執行此一動作最佳化的預測,預期將有更佳之結果。
The study implemented the optimization of the “Fa-Jin” technique in martial art by computer simulation and discussed the change of human movement after optimizing. The kinematic data of one martial art coach in “Fa-Jin” movement were collected by a 3D dimensional motion analysis system. The study built a 2D simple human model by AnyBody Modeling System and drove the model by importing the kinematic data from the experiment. The optimized calculation was carried out by setting the objective function which was the maximal summation of forward acceleration of the wrist and setting the boundary condition which the summation of muscle activities was smaller than 100% of the force. The movement changes of the model were discussed. The results showed that the peak values of both forward velocity and acceleration of the wrist improved after optimizing. In the first half phase, the body segment of model moved forward and then made a very small pause in the wrist. In the second half phase, all segments extended to move the wrist forward again. Moreover, the maximum of the summation of torques in joints increased. The coordination of joints was also improved. AnyBody software predicted the optimal movement by mathematic methods, however, the reality of the optimal movement still needed to be verified in real experiment. Furthermore, the better result was expected by the establishment of 3D full-body model.
安在峰 (2002)。太極推手絕技。臺北:大展。
念裕祥 (2004)。國術內家拳定步發勁分析。碩士論文,台北市立體育學院,台北市。
林易衡 (1995)。如何增加直拳攻擊的打擊效果。大專體育,81,215-220。
張瑞興、駱俊霖 (2002)。我國武術運動發展歷程之探討。大專體育,61,148-154。
張世博 (1997)。國術內家拳爆發整勁各關節動作順序及發力機轉之探討(個案研究)。碩士論文,文化大學,台北市。
張選惠、黃志強、胡懷中與高興 (1990)。陳式太極拳的肌電圖研究。武術科學探祕。北京:人民體育出版社。
陳五洲 (1987)。太極拳定步按發勁之運動學分析。碩士論文,國立台灣師範大學,台北市。
陳慧娟 (2008)。太極拳推手中攻與防之生物力學原理。碩士論文,國立成功大學,台南市。
吳榮輝 (2004)。傳統太極拳推手。技術報告書,國立體育學院,桃園縣。
吳培協、黃玉萍 (2003)。武術進入奧運會的分析研究。大專體育,64,26-32。
吳季剛 (2008)。拳擊出拳動作的肢段動力學分析。碩士論文,國立成功大學,台南市。
Asakawa, D. S., Blemker, S. S., Rab, G. T., Bagley, A., & Delp, S. L. (2004). Three-dimensional muscle-tendon geometry after rectus femoris tendon transfer. Journal of Bone and Joint Surgery, 86, 348-354.
Chan, S. P., Luk, T. C., & Hong, Y. (2003). Kinematic and electromyographic analysis of the push movement in tai chi. British Journal of Sports Medicine, 37, 339-344.
de Zee, M., Hansen, L., Wong, C., Rasmussen, J., & Simonsen, E. B. (2007). A generic detailed rigid-body lumbar spine model. Journal of Biomechanics, 40 1219-1227.
Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & de Zee, M. (2006). Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory, 14, 1100-1111.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A., & Langrana, N. A. (2008). Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. Journal of Biomechanics, 41, 2981-2988.
Fluit, R., van der Krogt, M. M., van der Kooij, H., Verdonschot, & Koopman, N., H. F. J. M. (2012). A simple controller for the prediction of three-dimensional gait. Journal of Biomechanics. 45, 2610-2617.
Grujicic, M., Pandurangan, M., Xie, X., Gramopadhye, A. K., Wagner, D., & Ozen, M. (2010). Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue. International Journal of Industrial Ergonomics, 40, 345-355.
Han, K. S., Zander, T., Taylor, W. R., & Rohlmann, A. (2012). An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering & Physics 34, 709-716.
Kim, T., Lee, K., & Kwon, J. (2012). Design Improvement of the Smith Machine using Simulation on Musculoskeletal Model. International Journal of CAD/CAM, 12, 1-8.
Ma, L., Zhang, W., Damien Chablat, D., Bennis, F., & Guillaume, F. (2009). Multi-objective optimisation method for posture prediction and analysis with consideration of fatigue effect and its application case. Computers & Industrial Engineering, 57, 1235-1246.
Neptune, R. R., & Hull, M. L. (1998). Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. Journal of Biomechanical Engineering, 120, 334-341.
Rasmussen, J., Damsgaard, M., Christensen, S. J., & Surma, E. (2002). Design optimization with respect to ergonomic properties. Structural and Multidisciplinary Optimization, 24, 89-97.
Spägele, T., Kistner, A., & Gollhofer, A. (1999). Modelling, simulation and optimisation of a human vertical jump. Journal of Biomechanics, 32, 521-530.
Thelen,D. G., & Anderson, F. C. (2006). Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics, 39, 1107-1115.
van der Kooij, H., Jacobs, R., Koopman, B, & van der Helm, F. (2003). An alternative approach to synthesizing bipedal walking. Biological Cybernetics, 88, 46-59.
Zhou, L., Bai, S., Hansen, M. R., & Rasmussen, J. (2011). Modeling of human arm energy expenditure for predicting energy optimal trajectories. Modeling, Identification and Control, 31, 91-101.