簡易檢索 / 詳目顯示

研究生: 林明暄
Ming-Syuan Lin
論文名稱: 高電容量且可快速充電的二硫化鐵天然礦石應用在鈉離子電池的陽極
High Capacity of Earth-Abundant FeS2 Materials for Sodium-Ion Batteries Anodes Under Ultrahigh Charge Rate
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 99
中文關鍵詞: 鈉離子電池二硫化鐵(天然黃鐵礦)陽極
英文關鍵詞: Sodium ion battery, iron disulfide(nature pyrite), anode
論文種類: 學術論文
相關次數: 點閱:227下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二硫化鐵(天然黃鐵礦)是近年來被廣泛研究並認為是極具潛力應用在鋰離子電池的陽極材料,因為二硫化鐵本身的一些良好性質及優點,例如高理論電容量、無毒性對於環境影響低和低成本。但是由於鋰金屬是非常昂貴的材料,最近二次電池之發展著重低成本電池之開發。鈉離子電池被認為是相當符合的一種選擇,因為鈉金屬的成本價格低、高理論電容量等優點,能夠完全取代性質相似的鋰金屬。但實際上,低能量密度、低輸出電位和電容量的限制是目前鈉離子電池遇到的問題,所以本篇論文,以尋找適合的電極材料來改善目前的鈉離子電池之問題。

所以本研究是將天然礦石二硫化鐵材料應用在鈉離子電池之陽極。我們發現二硫化鐵材料應用在鈉離子電池陽極上以電流密度約50mAg-1其第一圈放電電容量約為730mAhg-1而第一圈可逆電容量約為584 mAhg-1,其不可逆電容量約為20%。到了第50圈其電容量約還有400 mAhg-1。在第二次之後的充放電過程中可以發現不可逆電容量非常低。並且在快速充放電的測試過程中,我們以電流密度約8920 mAg-1的大電流充放電於二硫化鐵之鈉離子電池,其電容量約還有相當高之電容量280 mAhg-1。最後,我們發現單純以二硫化鐵應用在鈉離子電池的陽極上,有較好的循環表現、良好的庫倫效率和在快速充放電下可保持一定之電容量。

In recent years, FeS2 (natural pyrite) has been widely studied and considered to be potential electrode in the anode material for lithium-ion batteries, because some of the iron disulfide itself good properties and advantages, such as high theoretical capacity, no toxicity for low environmental impact and low cost. However, due to the lithium metal is very expensive material, secondary battery focuses on the development of low-cost battery. Sodium-ion battery is considered to be quite consistent with a choice, because of the low cost price of the sodium metal, high theoretical capacity, etc. It is possible to completely replace the similar properties of the lithium metal. But in fact, the low energy density, low output potential and capacity restriction are the problems encountered by the sodium-ion battery. In this thesis, we find a suitable electrode material to improve cycle stability and high capacity at high charge-discharge rate of the sodium-ion batteries.

Therefore, this study focused on the natural iron disulfide material used in the sodium-ion battery anode. We found that iron disulfide as anodic materials of sodium-ion battery (FeS2-NIB) has demonstrated the first discharge and charge capacity of 730 mAh g-1 and 584 mAh g-1 at a current density of 50 mA g-1. The irreversible capacity of first cycle is approximately 20%. Especially, the irreversible capacity of charge-discharge process after second cycle is much less. The capacity of FeS2-NIB still remained 400 mAh g-1 after 50th cycles. During rapid charge-discharge test, FeS2-NIB have high capacity of 280 mAh g-1 at a current density of 8920 mA g-1. Overall results showed that the pure iron disulfide as anodic materials of sodium-ion battery demonstrated long cycle performance, high coulombic efficiency and good capacity retention at high charge-discharge rate. The results indicate that earth-abundant FeS2 is an extremely interesting candidate as anode materials of sodium-ion battery with a suitable electrolyte for fast intercalate/deintercalate Na ion reversibly.

總目錄 I 圖表目錄 III 英文摘要 X 中文摘要 XII 第一章 緒論 1 1.1 簡介 1 1.2 正極(陰極) 3 1.2.1層狀結構 3 1.2.2橄欖石結構 6 1.2.3 NASICON結構 8 1.2.4 鈉磷酸氟金屬化合物 12 1.3 負極(陽極) 17 1.3.1碳材的負極材料 17 1.3.2其他的負極材料 19 1.4 電解質 21 1.4.1 凝膠聚合物電解質應用在鈉離子電池 21 1.4.2 陶瓷電解質應用在鈉離子電池 24 1.5 鋰離子和鈉離子電池的比較 27 1.6 二硫化鐵應用在鋰離子和鈉離子電池 33 1.6.1二硫化鐵應用在鋰離子電池 33 1.6.2二硫化鐵應用在鈉離子電池 40 第二章 實驗 43 2.1 鈉離子電池原理及介紹 43 2.2 儀器設備 46 2.3 實驗藥品 50 2.4材料鑑定與分析 51 2.5陽極(負極)電極製備 53 2.6 鈕扣型電池組裝及拆解 55 2.7 電解液的選擇及製備 57 2.8 電化學測試及介紹 61 第三章 實驗結果與討論 63 3.1 研究動機與目的 63 3.2 二硫化鐵材料的鑑定 64 3.2.1 粉末晶體繞射鑑定 64 3.2.2 掃描示電子顯微鏡鑑定 65 3.3 不同電位範圍的探討 69 3.4 不同溶劑量的影響 73 3.5不同電解液的比較 77 3.6 不同黏結劑的差異 82 3.7 電化學的測量及分析 84 第四章 結論 94 參考文獻 95

(1) Sauvage F, Laffont L, Tarascon J-M, Baudrin E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem., 2007,46,3289.
(2) Veronica Palomares, Paula Serras, Irune Villaluenga, Karina B. Hueso, Javier Carretero-Gonzalez, Teofilo Rojo. Energy Environ. Sci., 2012, 5, 5884.
(3)M. M. Doeff, Y. Ma, S. J. Visco, L. C. De Jonghe. J.Electrochem. Soc., 1993, 140, L169–L170.
(4) R. Berthelot, D. Carlier, C. Delmas. Nat. Mater., 2010, 10, 74–80.
(5) K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi,A. Mauger C. M. Julien. J. Power Sources., 2011, 196, 9612–9617.
(6) Y. Uebou, T. Kiyabu, S. Okada, J.-I. Yamaki, The Reports of Institute of Advanced Material Study., Kyushu University, 2002, vol.16,
pp. 1–5.
(7) L. S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki,
J. Electrochem. Soc., 2010, 157, A536–A543.
(8) J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid-State
Lett., 2003, 6, A1–A4.
(9) J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc., 2004,
151, A1670–A1677.
(10) A. Tsirlin, R. Nath, A. Abakumov, Y. Furukawa, D. Johnston,
M. Hemmida, H.-A. Krug von Nidda, A. Loidl, C. Geibel, H. Rosner, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 84, 014429.
(11) F. Sauvage, E. Quarez, J. Tarascon, E. Baudrin, Solid State Sci.,
2006, 8, 1215–1221.
(12) J. Barker, R. K. B. Gover, P. Burns, A. J. Bryan, Electrochem.
Solid-State Lett., 2006, 9, A190–A192.
(13) T. Jiang, G. Chen, A. Li, C. Wang, Y. Wei, J. Alloys Compd.,
2009, 478, 604–607.
(14) M. M. Doeff, T. J. Richardson, L. Kepley, J. Electrochem. Soc.,
1996, 143, 2507–2516.
(15) R. Alc_antara, J. M. Jim_enez-Mateos, P. Lavela, J. L. Tirado,
Electrochem. Commun., 2001, 3, 639–642.
(16) R. Alc_antara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochem.
Solid-State Lett., 2005, 8, A222–A225.
(17) D. A. Stevens, J. R. Dahn, J. Electrochem. Soc., 2000, 147,
1271–1273.
(18) S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Energy Environ. Sci.,
2011, 4, 3342–3345.
(19) P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M. R. Palac_ın, Chem. Mater., 2011, 23, 4109–4111.
(20) S. I. Park, I. Gocheva, S. Okada, J.-I. Yamaki, J. Electrochem.
Soc., 2011, 158, A1067–A1070.
(21) K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma,
V. V. R. Narasimha Rao, Phys. B., 2011, 406, 1706–1712.
(22) M. Patel, K. G. Chandrappa, A. J. Bhattacharyya, Solid State
Ionics., 2010, 181, 844–848.
(23) D. Kumar, S. A. Hashmi, Solid State Ionics., 2010, 181, 416–423.
(24) A. Bhide, K. Hariharan, Polym. Int., 2008, 57, 523–529.
(25) V. Aravindan, C. Lakshmi, P. Vickraman, Curr. Appl. Phys.,
2009, 9, 1106–1111.
(26) D. Kumar, S. A. Hashmi, J. Power Sources., 2010, 195,
5101–5108.
(27) Z. Yanhg, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi,
J. Lemmon, Chem. Rev., 2011, 111, 3577–3613.

(28) R. O. Fuentes, F. M. Figueiredo, F. M. B. Marques, J. E. Franco, Solid State Ionics., 2001, 140, 173–179.
(29) R. O. Fuentes, F. Figueiredo, F. M. B. Marques, J. I. Franco,
Ionics., 2002, 8, 383–390.
(30) P. Porkodi, V. Yegnaraman, P. Kamaraj, V. Kalyanavalli,
D. Jeyakumar, Chem. Mater., 2008, 20, 6410–6419.
(31) Shyue Ping Ong, Vincent L. Chevrier, Geoffroy Hautier, Anubhav Jain, Charles Moore, Sangtae Kim, Xiaohua Ma, Gerbrand Ceder, Energy Environ. Sci., 2011, 4, 3680–3688.
(32) S. P. Ong , V. L. Chevrier , G. Hautier , A. Jain , C. Moore , S. Kim
X. H. Ma , G. Ceder , Energy Environ. Sci., 2011 , 4 , 3680.
(33) J.-W. Choi et al. Journal of Power Sources., 2006, 163 , 158–165.
(34) D. Zhang et al. Electrochimica Acta., 2011, 56 , 9980– 9985.
(35) D. Zhang et al. Journal of Power Sources., 2012, 217 , 229-235.
(36) Yourong Wang, Hantao Liao, Jia Wang, Xiaofang qian, Yuchan Zhu, Siqing Cheng, Int. J. Electrochem. Sci., 2013 , 8, 4002 – 4009.
(37) T.B. Kim et al. Journal of Power Sources., 2007 , 174 , 1275–1278.

(38) Shinichi Komaba, Wataru Murata, Toru Ishikawa, Naoaki Yabuuchi, Tomoaki Ozeki, Tetsuri Nakayama, Atsushi Ogata, Kazuma Gotoh , Kazuya Fujiwara, Adv. Funct. Mater., 2011, 21, 3859–3867.
(39) B.L. Ellis, L.F. Nazar, Current Opinion in Solid State and Materials
Science., 2012, 16 , 168–177.
(40) Alexandre Ponrouch, Elena Marchante, Matthieu Courty, Jean-Marie Tarasconbc, M. Rosa Palacın, Energy Environ. Sci., 2012, 5, 8572–8583.

下載圖示
QR CODE