簡易檢索 / 詳目顯示

研究生: 林谷容
Lin, Ku-Jung
論文名稱: 應用於28 GHz相移器與可變增益放大器設計
Design of 28-GHz Phase Shifters and a Variable Gain Amplifier
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 157
中文關鍵詞: 第五代行動通訊互補式金屬氧化物半導體相位可反向衰減器反射式相移器開關式相移器電流控制架構可變增益放大器
英文關鍵詞: fifth generation, CMOS, phase-invertible variable attenuator, reflection-type phase shifter, switch-type phase shifter, current steering, variable gain amplifier
DOI URL: http://doi.org/10.6345/NTNU202001568
論文種類: 學術論文
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 文獻探討 3 1.2.1. 相移器 3 1.2.2. 可變增益放大器 6 1.3. 研究成果 9 第二章 相移器介紹 10 2.1. 相移器簡介 10 2.2. 相移器參數介紹 10 2.2.1. 相位差 (Phase Difference) 10 2.2.2. 插入損耗、振幅誤差 (Insertion Loss, Amplitude Error) 10 2.2.3. 均方根相位差、均方根振幅誤差 (RMS Phase Error, RMS Amplitude Error) 10 2.2.4. 1-dB增益壓縮點 ("P1dB" ) 11 2.2.5. 反射損耗 (Return Loss) 11 2.3. 相移器架構 11 2.3.1. 向量合成式相移器 12 2.3.2. 反射式相移器 13 2.3.3. 開關式相移器 14 2.3.4. 高通/低通相移器 15 2.3.5. 相位可反向衰減器 16 2.3.6. T橋式相移器 17 2.3.7. 開關電感/電容式相移器 19 第三章 28 GHz五位元開關式相移器設計 22 3.1. 電路架構 22 3.2. 90º反射式相移器設計與180º相位可反向衰減器 22 3.2.1. 90°相移器設計 22 3.2.2. 180º相移器設計 32 3.3. 正交耦合器設計 42 3.4. 反射負載設計 46 3.4.1. 90°相移器反射負載設計 47 3.4.2. 180°相移器反射負載設計 64 3.5. 11.25º、22.5º、45º相移器 79 3.6. 28 GHz五位元相移器模擬 87 3.7. 28GHz五位元相移器量測 99 3.8. 問題與討論 105 3.9. 五位元開關式相移器重新設計版本 105 3.10. 總結 118 第四章 28 GHz可變增益放大器 120 4.1. Current Steering架構 120 4.2. 可變增益放大器設計 121 4.2.1. 主電路電晶體偏壓分析與選擇 121 4.2.2. 主電路電晶體尺寸分析與選擇 123 4.2.3. Current Steering 129 4.2.4. 匹配網路設計 132 4.2.5. 旁路電路設計 134 4.3. 可變增益放大器之模擬 137 4.4. 可變增益放大器之量測 143 4.5. 問題與討論 147 4.6. 總結 149 第五章 結論 150 參 考 文 獻 151 自 傳 157 學 術 成 就 157

    [1] 林武璇,“應用於第五代行動通訊之28GHz相移器與升頻混頻器研究”,國立臺灣師範大學電機工程所碩士論文,民國106年。
    [2] 蕭璿,“應用於毫米波相位陣列系統之相移器設計”,國立臺灣師範大學電機工程所碩士論文,民國108年。
    [3] 林于惠,“應用於5G行動通訊之28GHz與38GHz相移器設計”,國立臺灣師範大學電機工程所碩士論文,民國108年。
    [4] J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” in IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, Mar. 2011.
    [5] G. Shin et al., "Low Insertion Loss, Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016.
    [6] J. -. Tsai, F. -. Lin and H. Xiao, "Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G applications," in Electronics Letters, vol. 54, no. 20, pp. 1184-1185, 4 10 2018.
    [7] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Zhengliang Huang, and Faxin Yu, “Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter,” IEEE Microwave and Wireless Components Letters., vol. 27, no. 5, pp. 482-484, May. 2017.
    [8] M. Wang, F. Ullah, X. Wang, Y. Xiao and Y. Liu, "A 25-31 GHz 6-bit Switch-type Phase Shifter in 0.13um SOI CMOS Process for 5G mmWave Phased Array Communications," 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, 2018, pp. 1-3.
    [9] J. Park, S. Kong, S. Jang, H. D. Lee, K. Kim and K. C. Lee, "Design of 6-Bit 28GHz Phase Shifter in 65NM CMOS," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 1513-1515.
    [10] N. Mazor, O. Katz, R. Ben-Yishay, D. Liu, A. V. Garcia and D. Elad, "SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
    [11] Y. Lin, C. Hsiao, P. Chi and C. Kuo, "A 39 GHz Reflection-Type Phase Shifter for Reflectarray Antenna Application," 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2019, pp. 1-3.
    [12] L.-Y. Huang, Y.-T. Lin, and C.-N. Kuo, “A 38 GHz Low-Loss Reflection-Type Phase Shifter,” 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix, AZ, Jan. 2017, pp. 54-56.
    [13] P. Gu and D. Zhao, "Ka-Band CMOS 360° Reflective-Type Phase Shifter with ±0.2 dB Insertion Loss Variation Using Triple-Resonating Load and Dual-Voltage Control Techniques," Radio Frequency Integrated Circuits Symposium., Philadelphia, PA, 2018, pp. 140-143.
    [14] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range," Transactions on Microwave Theory and Techniques., vol. 65, no. 11, pp. 4703-4714, Nov. 2017.
    [15] Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018
    [16] J. Pang, R. Kubozoe, Z. Li, M. Kawabuchi and K. Okada, "A 28GHz CMOS Phase Shifter Supporting 11.2Gb/s in 256QAM with an RMS Gain Error of 0.13dB for 5G Mobile Network," European Microwave Conference, Madrid, 2018, pp. 807-810.
    [17] Jingjing Xia, Slim Boumaiza, “Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5◦ RMS Magnitude/Phase Errors and Enhanced Linearity,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, Issue. 6, pp. 914-918, Jun. 2019
    [18] Q. Zheng et al., "Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 482-484, May 2017
    [19] K. W. Han, H. Cui, X. W. Sun, and J. Zhang, “The design of a 60 GHz low loss hybrid phase shifter with 360 degree phase shift,” 2014 14th International Symposium on Communications and Information Technologies (ISCIT)., Incheon, 2014, pp. 551-554.
    [20] B. W. Min and G. M. Rebeiz, “Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
    [21] Z. Tsai, J. Kao, K. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627
    [22] P. H. Lo, C. C. Lin, H. C. Kuo and H. R. Chuang, “A Ka-band CMOS Low-phase-variation Variable Gain Amplifier With Good Matching Capacity,” in Proc. 42nd Eur. Microw. Conf., Oct. /Nov. 2012, pp. 858-861.
    [23] Z. Jiang et al., “A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,” in 2017 IEEE Asia Pacific Microwave Conference (APMC), Nov. 2017, pp. 1200-1202.
    [24] Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, Aug. 2014.
    [25] H. C. Yeh, S. Aloui, C. C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013.
    [26] Y. Yi, D. Zhao, and X. You, A. Valdes-Garcia, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
    [27] S. Lee, J. Park and S. Hong, "A Ka-Band Phase-Compensated Variable-Gain CMOS Low-Noise Amplifier," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 131-133, Feb. 2019
    [28] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018
    [29] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, "A Ka-Band Variable-Gain Amplifier With Low OP1dB Variation for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 722-724, Nov. 2019
    [30] H. V. Le, H. T. Duong, A. T. Huynh, R. J. Evans and E. Skafidas, "A CMOS wideband highly linear variable gain amplifier," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 694-696
    [31] Che-Chung Kuo, Zuo-Min Tsai, Jeng-Han Tsai and Huei Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 609-612
    [32] Yun-Chieh Chiang, Wei-Tsung Li, Jeng-Han Tsai and Tian-Wei Huang, "A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, 2012, pp. 1-3
    [33] W. Li, Y. Kuo, Y. Wu, J. Cheng, T. Huang and J. Tsai, "An X-band full-360° reflection type phase shifter with low insertion loss," 2012 42nd European Microwave Conference, Amsterdam, 2012, pp. 1134-1137
    [34] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013
    [35] B. Min and G. M. Rebeiz, "Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends," in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008
    [36] M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell and J. Papapolymerou, "5 bit, silicon-based, X-band phase shifter using a hybrid pi/t high-pass/low-pass topology," in IET Microwaves, Antennas & Propagation, vol. 2, no. 1, pp. 19-22, February 2008
    [37] C. Wang, H. Wu, M. Chiang and C. C. Tzuang, "A 24 GHz CMOS miniaturized phase-invertible variable attenuator incorporating edge-coupled synthetic transmission lines," 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, 2009, pp. 841-844
    [38] J. Tsai, Y. Tung and Y. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020
    [39] Yu-Hsuan Lin and H. Wang, "A low phase and gain error passive phase shifter in 90 nm CMOS for 60 GHz phase array system application," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
    [40] B. Ku and S. Hong, "6-bit CMOS Digital Attenuators With Low Phase Variations for $X$-Band Phased-Array Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1651-1663, July 2010
    [41] Ken Leong Fong, "Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications," 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), San Francisco, CA, 1999, pp. 224-225
    [42] J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301, Feb. 2007
    [43] S. Kassim and F. Malek, "Microwave FET amplifier stability analysis using Geometrically-Derived Stability Factors," 2010 International Conference on Intelligent and Advanced Systems, Manila, 2010, pp. 1-5
    [44] R. V. Garver, "Broad-Band Diode Phase Shifters," in IEEE Transactions on Microwave Theory and Techniques, vol. 20, no. 5, pp. 314-323, May 1972
    [45] J. Chen, S. Mou, K. Ma and F. Meng, "A 3–6-GHz Wideband Compact 6-Bit Phase Shifter in 0.5-μm GaAs Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 794-797, Aug. 2020
    [46] Zou Pei, Kaixue Ma and Shouxian Mou, "A compact 6-bit phase shifter in 0.35 µm SiGe BiCMOS technology," 2016 International Symposium on Integrated Circuits (ISIC), Singapore, 2016, pp. 1-4

    無法下載圖示 電子全文延後公開
    2025/09/18
    QR CODE