簡易檢索 / 詳目顯示

研究生: 楊舒如
Shu-Ju Yang
論文名稱: 血管加壓素微量注入最後區引起大鼠心肺功能降低及其可能的訊息傳導路徑
Microinjection of arginine vasopressin into the area postrema producing cardiopulmonary inhibition and its signaling pathway in the rats
指導教授: 黃基礎
Hwang, Ji-Chuu
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 159
中文關鍵詞: 血管加壓素最後區
英文關鍵詞: arginine vasopressin, area postrema
論文種類: 學術論文
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最後區位於延腦的背面,缺乏血腦障壁,且富含血管加壓素接受器。以血管加壓素興奮最後區的神經元,會降低運動所引發的升壓作用。將血管加壓素微量注射到延腦腹外側會抑制呼吸、也會調節心血管的功能。本論文研究的目的是評估將血管加壓素注入到最後區是否會抑制呼吸與血壓,並研究其作用的可能機制。實驗選用Wistar品系的雄鼠,以氨基甲酸乙酯(urethane)麻醉,進行股動、靜脈插管,分別用來測量血壓與注射藥物,之後進行氣管插管,並切斷兩側迷走神經,經麻痺後接上人工呼吸器。然後將動物固定於腦定位儀,分離膈神經並記錄其活性,動物在維持高氧、正常二氧化碳濃度情況下進行實驗,少數實驗則是在高氧與提高二氧化碳濃度的情況下進行。微量注射三種不同劑量的血管加壓素,分別是1.5×10-5, 3.0×10-5 和 4.5×10-5 IU等劑量。本論文共完成四個實驗,觀察血管加壓素是否經由V1A接受器來抑制呼吸和血壓,並進一步研究這種抑制作用是否經由一連串細胞內的訊號傳遞作用,促使鉀離子孔道關閉,引起神經元去極化而使電壓閘門鈣離子孔道打開所引起。第一個實驗結果是將血管加壓素注入最後區,發現會抑制呼吸(包括膈神經高度降低與呼氣時間延長)與降低血壓,這種抑制作用呈現劑量反應,且是經由V1A接受器來達成;第二個實驗結果顯示血管加壓素注入最後區對呼吸與血壓的抑制作用,會被兩側孤獨徑核預處理利多卡因(lidocaine)或氯化鈷所阻斷,暗示抑制作用可能是藉由最後區投射到孤獨徑核的神經徑路來完成,不僅如此,注射血管加壓素所引起的抑制作用還會因二氧化碳濃度增加而減弱;這些結果顯示血管加壓素作用於最後區V1A接受器,主要是經由孤獨徑核進而抑制呼吸與血壓。
    第三個實驗是要研究血管加壓素引起降壓作用的機制,也就是找出神經元內所發生的訊息傳導作用,在這個實驗,我先以V1A和磷脂酶C抑制劑 (PLC inhibitor)證明血管加壓素的作用是藉由V1A接受器和磷脂酶C,然後以微量注射技術,在相同的注射位置注入 BAPTA-AM (為一種胞內與胞外 Ca++螯合劑)或乙二醇-雙-(2-氨基乙基)四乙酸 (EGTA; 為一種胞外 Ca++螯合劑),證明血管加壓素的降壓作用是因為Ca++從胞外進入胞內,使胞內Ca++增加所引起,在這個實驗還進一步利用各種不同的Ca++孔道阻斷劑,證明是Ca++經由 L- 型與P-/Q-型的Ca++孔道進入細胞,從另一組動物所得結果顯示,血管加壓素引起的降壓作用會被PKC預處裡所阻斷,但神經元外的鉀離子增多或以鉀離子孔道阻斷劑阻止鉀離子從細胞擴散出來,會模擬血管加壓素的降壓作用,這可能是神經元內的鉀離子增多、發生去極化所引起;第四個實驗是比較麩胺酸與血管加壓素作用於最後區產生降壓作用的機制是否相同,雖然麩胺酸的降壓作用也是使神經元內的Ca++增加,但是增加的機制卻不一樣,麩胺酸引起神經元內Ca++增加是動員細胞本身內部所儲存的Ca++,而不是從胞外進入,因此,與麩胺酸比較,血管加壓素引起Ca++進入神經元的作用是相當具有專一性的。這四個實驗所得結果充分說明血管加壓素的作用是,活化V1A接受器,經由細胞內的訊號傳遞作用,也就是經由PLC-DAG-PKC的路徑而關閉鉀離子孔道,促使神經去極化、電位升高,於是打開了L-型與P-/Q-型的Ca++電壓閘門孔道,讓Ca++進入神經細胞,而引起降壓作用。

    The area postrema (AP) is located at the dorsal surface of the medulla, lacks of blood-brain barrier, and have abundant AVP receptors. AVP-induced activation of neurons in the AP has been demonstrated to attenuate the exercise-evoked pressor effect. Microinjection of AVP into the ventrolateral medulla can produce inhibition on respiration and modulation on cardiovascular functions. The present study was aimed to evaluate whether activation of AVP receptors in the AP could modulate cardiopulmonary functions and to examine the mechanism. Male Wistar rats were anesthetized with urethane (1.2 g/kg, i.p.). The femoral artery and vein were catheterized for monitoring blood pressure (BP) and drug administration. Tracheostomy, bilateral cervical vagotomy, paralyzation, and artificial ventilation were performed. The rat was then placed in a stereotaxic instrument with a prone position. The phrenic nerve was separated and its activity (PNA) was monitored at normocapnia in hyperoxia and hypercapnia if needed. Microinjection of various doses of AVP (1.5×10-5, 3.0×10-5 and 4.5×10-5 IU) into the AP was performed. There were four projects completed in the present dissertation to determine that AVP microinjection into the AP could produce inhibition on the PNA and BP via the V1A receptor and that a putative signaling pathway from PLC-DAG-PKC to inactivation of potassium channels and in turn to activate the voltage-gated calcium channels might have been activated. In the first project, the microinjection of AVP into the AP produced a dose-dependent inhibition on the PNA reflecting a decrease of phrenic amplitude and an elongation of expiratory period (TE) immediately and also a decrease in BP. The cardiopulmonary inhibition caused by AVP was totally abolished by the pretreatment of AVP V1A receptor antagonist. Results obtained from the second project showed that this cardiopulmonary modulation induced by AVP could be completely reversed by a pretreatment of lidocaine and/or CoCl2 at the both sides of the nucleus tractus solitarius (NTS), suggesting that AVP-producing cardiopulmonary modulation might be mediated through a neural pathway projecting from the AP to the NTS. Moreover, respiratory inhibition evoked by AVP was significantly attenuated by hypercapnia. These results strongly suggest that AVP V1A receptors in the AP may participate in the modulation of cardiopulmonary functions through the activation of V1A receptors and the pathway connected to the NTS.
    The third project was designed to search the putative signal transduction pathway for AVP-induced decrease in blood pressure. To elucidate this putative signaling pathway, response of the BP to calcium influx into the AP neurons caused by AVP was examined in adult Wistar rats. In the third project, we firstly demonstrated that hypotension induced by AVP was totally abolished by V1A antagonist, U73122 (phospholipase C blocker), and by BAPTA-AM (Ca++ chelator), suggesting that an increasing intracellular Ca++ is essential for AVP-induced hypotension. We then confirmed that this hypotension induced by AVP was completely abolished by EGTA (extracellular Ca++ chelator) and various Ca++ blockers such as nifedipine, nimodipine (L-types Ca++ blockers), and omega-conotoxin MVIIC (P/Q type Ca++ blocker), but not by omega-conotoxin GVIA (N-type Ca++ blocker). Finally, we verified that AVP-induced hypotension was blocked by calphostin C (protein kinase C inhibitor) and mimicked by an increase in intracellular K+ ions that was also reversed by EGTA, suggesting that Ca++ influx through voltage-gated calcium channels is essential for AVP-producing hypotension. The fourth project was aimed to confirm that Ca++ influx was specific for AVP-induced hypotension. This conclusion was based on the results that glutamate-induced hypotension was reversed by BAPTA-AM but not by EGTA or V1A antagonist. These results suggest that AVP-induced hypotension depends on Ca++ influx through a PLC-DAG-PKC signal pathway to inactivate K+ channels that may depolarize AP neurons to activate L- and P/Q-type Ca++ channels. It may also provide new insights into establishing a relationship between the signal pathway and physiological functions.

    Abbreviation Table…………………………………………………………...………...i List of Figures and Table…………………………………………………..….………iii 中文摘要……………………………………………………………………………...iv Abstract…………………………………………………………………….…………vi Chapter 1 Introduction 1 1.1 The area postrema 2 1.1.1 Anatomy of the area postrema 2 1.1.2 Neuronal properties of the area postrema 2 1.1.3 Neural pathway of the area postrema 3 1.2 Physiological functions of the area postrema 5 1.2.1 Food intake 5 1.2.2 Emetic control of the Area postrema 6 1.2.3 Cardiovascular regulation of Area postrema 6 1.2.4 Respiratory modulation of Area postrema 8 1.3 Arginine-vasopressin (AVP) 9 1.3.1 Structure and Synthesis of AVP 9 1.3.2 Regulation of Vasopressin Release 11 1.3.2.1 Hyperosmolality 11 1.3.2.2 Hypovolemic Regulation 12 1.3.2.3 Hormonal Regulation 12 1.3.3 Receptors of AVP 13 1.3.3.1 V1 receptors 13 1.3.3.2 V2 receptors 14 1.3.3.3 V3 receptors 14 1.3.4 Signaling pathways of AVP action 15 1.3.4.1 V1 receptor signal transduction processes 15 1.3.4.2 V2 receptor signal transduction processes 17 1.3.5 Physiological functions of AVP 17 1.3.5.1 Cardiovascular modulation 18 1.3.5.2 Respiratory modulation 20 1.3.5.3 Fluid balance 20 1.3.5.4 Learning and memory 21 1.3.5.5 Regulation of temperature 21 1.3.5.6 Other Effects 22 1.4 AVP actions through a functional AP-NTS Pathway 23 1.5 Questions 24 1.6 Objectives 26 Chapter 2 Material and Methods 29 2.1 Animal Preparation 29 2.2 Monitoring blood pressure 31 2.3 Recording of Phrenic Nerve Activity 31 2.4 Microinjection technique 32 2.4.1 Microelectrode 32 2.4.2 Location of microinjection sites 32 2.4.3 Volume of microinjection 34 2.5 Experimental Protocol 34 2.6 Drug preparation 44 2.7 Data and Statistical Analysis 47 2.8 Histological Verification 48 Chapter 3 Results 49 3.1 Effect of AVP injection into the AP on phrenic nerve activity 49 3.2 Changes in respiratory pattern with AVP injected into the AP 50 3.3 Cardiovascular responses to AVP microinjeciton into the AP 50 3.4 V1A receptor mediating AVP-induced cardiopulmonary inhibition 51 3.5 Hypercapnia reducing AVP-induced cardiopulmonary inhibition 52 3.6 AVP injected into specific area of the NTS producing hypotension 52 3.7 AVP-induced cardiopulmonary inhibition via a AP-NTS pathway 53 3.8 Reproducible decreases in BP by AVP via the V1A receptor 54 3.9 AVP-induced hypotension through activation of phospholipase C 55 3.10 Increase in Ca++ in AP neurons in relation to hypotension 56 3.11 Ca++ influx responsible for AVP-induced hypotension 57 3.12 Ca++ influx through voltage-gated calcium channels 58 3.13 Glutamate-induced hypotension similar to AVP injection 61 3.14 Ca++ influx specific for AVP-induced hypotension 62 Chapter 4 Discussion 64 4.1 Critique of Method 64 4.1.1 Microelectrode 64 4.1.2 Microinjection sites in AP 65 4.2 Interpretation of pontamine sky blue dye 70 4.3 Respiratory inhibition by AVP mediating via V1A receptors 70 4.4 Cardiovascular modulation by AVP-activated neurons in the AP 72 4.4.1 AVP-excited AP neuron producing changes in blood pressure 72 4.4.2 AVP-excited AP neuron producing changes in heart rate 74 4.5 AVP-induced cardiopulmonary inhibition via a AP-NTS pathway 75 4.6 Calcium influx responsible for hypotension caused by AVP 76 4.7 The putative mechanism for activation of VGCCs 79 4.8 Calcium influx specific for AVP-induced hypotension 81 4.9 Physiological Considerations 83 Chapter 5 Conclusion 85 Figures 86 Table 121 Chapter 6 References 122

    Aiello EA, Clement-Chomienne O, Sontag DP, Walsh MP and Cole WC. Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am. J. Physiol. 271: H109-H119, 1996.
    Albers HE, Pollock J, Simmons WH and Ferris CF. A V1-like receptor mediates vasopressin-induced flank marking behavior in hamster hypothalamus. J. Neurosci. 6: 2085–2089, 1986.
    Alescio-Lautier B, Paban V and Soumireu-Mourat B. Neuromodulation of memory in the hippocampus by vasopressin. Eur. J. Pharmacol. 405: 63–72, 2000.
    Allen MA, Smith PM and Ferguson AV. Adrenomedullin microinjection into the area postrema increases blood pressure. Am. J. Physiol. 272: R1698-R1703, 1997.
    Antoni F. Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology. 39: 186-188, 1984.
    Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol. 14: 76-122, 1993.
    Aoki CRA, Liu H, Downey GP, Mitcheli J and Horner RL. Cyclic nucleotides modulate genioglossus and hypoglossal responses to excitatory inputs in rats. Am. J. Respir. Crit. Care Med. 173: 555-565, 2006.
    Arima H, Kondo K, Murase T, Yokoi H, Iwasaki Y, Saito H and Oiso Y. Regulation of vasopressin synthesis and release by area postrema in rats. Endocrinology. 139: 1481-1486, 1998.
    Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neurobiol. 47: 291-339, 1995.
    Baertschi AJ and Friedli M. A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology 116: 499-502, 1985.
    Banasik JL, Hosick H and Wright JW. Endothelin binding in brain of normotensive and spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 257: 302–306, 1991.
    Bankir L, Fernandes S, Bardoux P, Bouby N and Bichet DG. Vasopressin-V2 Receptor Stimulation Reduces Sodium Excretion in Healthy Humans. J. Am. Soc. Nephrol. 16: 1920-1928, 2005.
    Baojian X, Gole H, Pamidimukkala J and Hay M. Role of the area postrema in angiotensin II modulation of baroreflex control of heart rate in conscious mice. Am. J. Physiol. 284: H1003-H1007, 2003.
    Barberis C and Tribollet E. Vasopressin and oxytocin receptors in the central nervous system. Crit. Rev. Neurobiol. 10(1): 119-54, 1996.
    Barman SA, Zhu S and White RE. Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 286: L149-L155, 2004.
    Barnes KL, Ferrario CM and Chernicky CL. Participation of area postrema in cardiovascular control in the dog. Federation Proc. 43: 2959-2962, 1984.
    Berecek KH, Olpe HR, Jones RS and Hofbauer KG. Microinjection of vasopressin into the locus coeruleus of conscious rats. Am. J. Physiol. 247: H675-H681, 1984.
    Bhatnagar T, Chtrvanshi VC and Sapru HN. Cardiovascular responses to microinjections of excitatory amino acids into the area postrema of the rat. Brain Res. 822: 192-199, 1999.
    Bianchi AL, Denavit-Saubié M and Champagnat J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 75: 1-43, 1995.
    Bishop VS and Hay M. Involvement of area postreman in the regulation of sympathetic outflow in the cardiovascular system. Front. Neuroendocrionol. 14: 57-75, 1993.
    Bliss TV and Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232: 331-356, 1973.
    Boland LM and Jackson KA. Protein kinase C inhibits Kv1.1 potassium channel function. Am. J. Physiol. 277: C100-C110, 1999.
    Bongianni F, Mutolo D, Carfi M and Pantaleo T. Area postrema glutamate receptors mediate respiratory and gastric responses in the rabbit. NeuroReport. 9: 2051-2062, 1998.
    Bonham AC and Hasser EM. Area postrema and aortic or vagal afferents converge to excite cells in nucleus tractus solitarius Am. J. Physiol. 264: Hl674-Hl685, 1993.
    Bonigut S, Bonham AC and Stebbins CL. Area postrema-induced inhibition of the exercise pressor reflex. Am. J. Physiol. 272: Hl650-Hl655, 1997.
    Borison HL and Wang SC. Physiology and pharmacology of vomiting. Pharmacol. Rev. 5(2): 193-230, 1953.
    Bouley R, Lin HY, Raychowdhury MK, Vladimir M, Brown D and Ausiello DA. Downregulation of the vasopressin type 2 receptor after vasopressin-induced internalization: involvement of a lysosomal degradation pathway. Am. J. Physiol. 288: C1390-C1401, 2005.
    Brattstrom A, De Jong W and Wied DD. Vasopressin micro-injections into the nucleus tractus solitarii decrease heart rate and blood pressure in anesthetized rats. J. Hypertens. 6: S521-S524, 1988.
    Brizzee KR and Klara PM. The structure of the mammalian area postrema. Fed. Proc. 43(15): 2944-2948, 1984.
    Brown SG, Thomas A, Dekker LV, Tinker A and Leaney JL. Protein kinase C-δ-sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels following M3 receptor activation in HEK293 cells. Am. J. Physiol. 289: C543-C556, 2005.
    Brueggemann LI, Martin BL, Barakat J, Byron KL and Cribbs LL. Low voltage-activated calcium channels in vascular smooth muscle: T-type channels and AVP-stimulated calcium spiking. Am. J. Physiol. 288: H923-H935, 2005.
    Brueggemann LI, Moran CJ, Barakat JA, Yeh JZ, Cribbs LL and Byron KL. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells. Am. J. Physiol. 292: H1352-H1363, 2007.
    Budzikowski AS, Paczwa P and Sadowska SE. Central V1 AVP receptors are involved in cardiovascular adaptation to hypovolemia in WKY but not in SHR. Am. J. Physiol. 271: H1057-H1064, 1996.
    Buij RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue. 3c: 423-435, 1978.
    Byron KL and Lucchesi PA. Signal transduction of physiological concentrations of vasopressin in A7r5 vascular smooth muscle cells. J. Biol. Chem. 277: 7298-7307, 2002.
    Cai Y, Hay M and Bishop VS. Synaptic connections and interactions between area postrema and nucleus tractus solitarius. Brain Res. 724: 121-124, 1996.
    Caldwell HK and Young WS. Oxytocin and Vasopressin: Genetics and Behavioral Implications. In Lim R. (ed.) Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides, 3rd edition, Springer, New York, 573-607, 2006.
    Carlson SH, Collister JP and Osborn JW. The area postrema modulates hypothalamic Fos responses to intragastric hypertonic saline in conscious rats. Am. J. Physol. 275: 1921-1927, 1998.
    Carpenter DO. Central nervous system mechanisms in deglutition and emesis. In: Handbook of physiology. Section 6, Gastrointestinal system. Vol. 1. Schultz SG, editor. Washington, DC: American Physiological Society. 685-714, 1989.
    Carpenter O, Briggs DB, Knox AP and Strominger N. Excitation of area postrema neurons by transmitters, peptides, and cyclic nucleotides. J. Neurophysiol. 59: 358-369, 1988.
    Carter DA and Lightman SL. A role for the area postrema in mediating cholecystokinin-stimulated oxytocin secretion. Brain Res. 435: 327-330, 1987.
    Casto R and Philips I. Cardiovascular actions of microinjections of angiotensin II in the brain stem of rats. Am. J. Physiol. 246(15): R811-R816, 1984.
    Cheng MT, Chuang CW, Lin JT and Hwang JC. Cardiopulmonary response to vasopressin-induced activation on V1A receptors in the lateral ventrolateral medulla in the rat. Chin. J. Physiol. 47: 31-34, 2004.
    Chepkova AN, French P, Wied DD, Ontskul AH, Ramakers GMJ, Skrebitski VG, Gispen WH, Urban IJA. Long-lasting enhancement of synaptic excitability of.CA1/subiculum neurons of the rat ventral hippocampus by vasopressin and vasopressin(4-8). Brain Res. 701: 255-266, 1995.
    Choi-Kwon S, McCarty R, and Baertschi AJ. Splanchnic control of vasopressin secretion in conscious rats. Am. J. Physiol. 259: E19-E26, 1990.
    Choi-Kwon S and Baertschi AJ. Splanchnic osmosensation and vasopressin: mechanisms and neural pathways. Am. J. Physiol. 261: E18-E25, 1991.
    Chwalbinska-Moneta J. Role of hepatic portal osmoreception in the control of ADH release. Am. J. Physiol. 236: E603-E609, 1979.
    Chuang CW, Cheng MT, Lin JT, Hsien YY, Hung HY and Hwang JC. Arginine vasopressin produces inhibition upon respiration without pressor effect in the rat. Chin. J. Physiol. 46: 71-78, 2003.
    Chuang CW, Cheng MT, Yang SJ and Hwang JC. Activation of ventrolateral medulla neurons by arginine vasopressin via V1A receptors produces inhibition on respiratory-related hypoglossal nerve discharge in the rat. Chin. J. Physiol. 48(3): 144-154, 2005.
    Collins HL, Rodenbaugh DW and DiCarlo SE. Central blockade of vasopressin V1 receptors attenuates postexercise hypotension. Am. J. Physiol. 281: R375-R380, 2001.
    Contreras RJ, Beckstead RM and Norgren R. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: An autoradiographic study in the rat. J. Auton. Nerv. Syst. 6(3): 303-322, 1982.
    Cooper KE, Kasting NW, Lederis K, Veale WL. Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep. J. Physiol. 295: 33-45, 1979.
    Cottrell GT and Ferguson AV. Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul. Pept. 117: 11-23, 2004.
    Cox BF, Hay M and Bishop VS. Neurons in area postrema mediate vasopressin-induced enhancement of the baroreflex. Am. J. Physiol. 258: H1943-H1946, 1990.
    Croiset G, Nijsen MJ and Kaphuis PJ. Role of corticotropin-releasing factor, vasopressin and the autonomic nervous system in learning and memory. Eur. J. Pharmacol. 405: 225-234, 2000.
    Cunningham ETJ, Miselis RR and Sawchenko PE. The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat. Neuroscience. 58: 635-648, 1994.
    Curtis KS, Verbalis JG and Stricker EM. Area postrema lesions in rats appear to disrupt rapid feedback inhibition of fluid intake. Brain Res. 726:31-38, 1996.
    Davies RO and Kalia M. Carotid sinus nerve projections to the brain stem in the cat. Brain Res. Bull. 6: 531-541, 1981.
    Dayanithi G, Sabatier N and Widmer H. Intracellular calcium signaling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp. Physiol. 85: 75S-84S, 2000.
    de Wied, D., Joëls, M. and Burbach, J.P.H. Vasopressin effects on the central nervous system. In: Conn, P.M. and Negro Villar, A. Editors, 1988. Peptide Hormones: Effects of Mechanisms of Action CRC Press, Boca Raton, FL, 97–140, 1988.
    Dean C, Seagard JL. Expression of c-fos protein in the nucleus tractus solitarius in response to physiological activation of carotid baroreceptors. Neuroscience 69: 249-257, 1995.
    Diamant M and de Wied D. Differential effects of centrally injected AVP on heart rate, core temperature, and behavior in rats. Am. J. Physiol. 264: R51-R61, 1993.
    Dong J, Xie XH, Lu DX and Fu YM. Effects of electrical stimulation of ventral septal area on firing rates of pyrogen-treated thermosensitive neurons in preoptic anterior hypothalamus from rabbits. Life Sci. 80(5): 408-413, 2007.
    Donnerer J. The Emetic Reflex Arc. Antiemetic Therapy. 1-10, 2003.
    Donoghue S, Garcia M, Jordan D and Spyer KM. Identification and brain-stem projections of aortic baroreceptor afferent neurones in nodose ganglia of cats and rabbits. J. Physiol. 322: 337-352, 1982.
    Dunnett CW. New tables for multiple comparisons with a control. Biometrics. 20: 482-491, 1964.
    Fan J and Byron KL. Ca2+ signalling in rat vascular smooth muscle cells: a role for protein kinase C at physiological vasoconstrictor concentrations of vasopressin. J. Physiol. 524, 821-831, 2000.
    Ferguson AV and Marcus P. Area postrema stimulation induced cardiovascular changes in the rat. Am. J. Physiol. 255:R855-R860, 1988.
    Ferguson AV and Bains JS. Electrophysiology of the Circumventricular Organs. Front Neuroendocriol. 17: 440–475, 1996.
    Fink GD, Pawloski CM, Blair ML and Mangiapane ML. The area postrema in deoxycorticosterone-salt hypertension in rats, Hypertension 9 (Suppl. III): III206–III209, 1987.
    Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42: 1-11, 1984.
    Frugiere A, Nunez E, Pasaro R, Gaytan S and Barillot JC. Efferent projection from the rostral ventrolateral medulla to to area postrema in rats. J. Auton. Nerv. Syst. 72: 34-45, 1998.
    Funahashi M, Mitoh Y and Matsuo R. Electrophysiological properties of the rat area postrema neurons displaying both the transient outward current and the hyperpolarization-activated inward current. Brain Res. Bull. 58: 337-343, 2002.
    Funahashi M, Mitoh Y, Kohjitani A and Matsuo R. Role of the hyperpolarization-activated cation current (Ih) in pacemaker activity in area postrema neurons of rat brain slices. J. Physiol. (London) 552: 135-148, 2003.
    Funahashi M, Mitoh Y, Akaike T and Matsuo R. Variety of morphological and electrophysiological properties of area postrema neurons in adult rat brain slices. Neurosci. Res. 54(1): 43-48, 2006.
    Gatti PJ, Souza JD, Da Silva AMT, Quest JA and Gillis RA. Chemical stimulation of the area postrema induces cardiorespiratory changes in the cat. Brain Res. 346: 115-123, 1985.
    Gildenberg PL, Ferrario CM and Mccubbin JW. Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin. Sci. 44: 417-420, 1973.
    Goa X, Philips PA, Widdop RE, Trinder D, Jarrott B, and Johnston CI. Presence of functional vasopressin V1 receptors in rat vagal afferent neurons. Neurosci. Lett. 145: 79-82, 1992.
    Goodchild AK, Dampney RAL and Bandler R. A method for evoking physiological responses by stimulation of cell bodies but not axons of passage, within a localized region of the central nervous system. J. Neurosci. Methods 6: 357-363, 1982.
    Gorog P and Kovacs IB. Effect on dimethyl sulfoxide (DMSO) on various experimental inflammations. Curr. Ther. Res. 10: 486-492, 1968.
    Hamel C, Millette E and Lamontagne D. Role of nitric oxide and protein kinase C in the tachyphylaxis to vasopressin in rat aortic rings. Life Sci. 77: 1069-1081, 2005.
    Hardy EGP. Hypothalamic projections to cardiovascular centers of the medulla. Brain Res. 894: 233-240, 2001.
    Hasser EM, Undesser KP and Bishop VS. Interaction of vasopressin with area postrema during volume expansion. Am. J. Physiol. 253: R605-R610, 1987.
    Hasser EM and Bishop VS. Reflex effect of vasopressin after blockade of V1 receptors in the area postrema. Circ. Res. 67: 265-271, 1990.
    Hasser, EM, Cunningham JT, Sullivan MJ, Curtis KS, Blaine EH and Hay M. Area postrema and sympathetic nervous system effects of vasopressin and angiotensin II. Clin. Exp. Pharmacol. Physiol. 27: 432-436, 2000.
    Haxhiu MA, Deal EC, Mathew PJ, van Lunteren NE, Mitra J and Cherniack NS. Influence of ventrolateral surface of medulla on reflex tracheal constriction. J. Appl. Physiol. 61: 791-796, 1986.
    Hay M and Bishop VS. Interactions of area postrema and solitary tract in the nucleus tractus solitarius. Am. J. Physiol. 260: Hl466-H1473, 1991.
    Hay M and Lindsley KA. Membrane properties of area postrema neurons. Brain Res. 705:199–208, 1995.
    Hay M, Hasser EM, and Lindsley KA. Area postrema voltage-activated calcium currents. J. Neurophysiol. 75: 133-141, 1996.
    Hay M and Lindsley KA. AMPA receptor activation of area postrema neurons. Am. J. Physiol. 276: R586-R590, 1999.
    Hay M. Circumventricular Organs: Gateways to the Brain Subcellular mechanisms of area postrema activation. Clinic. Exp. Pharmacol. Physiol. 28: 551-557, 2001.
    Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, Fushimi K, Marumo F and Saruta T. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J. Clin. Invest. 94(5): 1778-1783. 1994.
    Hegarty AA, Hayward LF and Felder RB. Sympathetic responses to stimulation of area postrema in decerebrate and anesthetized rats. Am. J. Physiol. 268: H1086-H1095, 1995.
    Hegarty AA and Felder RB. Vasopressin and V1-receptor antagonists modulate the activity of NTS neurons receiving baroreceptor input. Am. J. Physiol. 273: R143-R152, 1997.
    Henderson KK and Byron KL. Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways. J. Appl. Physiol. 102: 1402-1409, 2007.
    Henry JL and Sessle BJ. Vasopressin and oxytocin express excitatory effects on respiratory and respiration-related. neurones in the nuclei of the tractus solitarius in the cat. Brain Res. 491: 150-155, 1989.
    Hermes MLHJ, Buus RM, Masson-Pevet M, von der Woude TP, Pevet P, Brenkle R and Kirsch R. Central vasopressin infusion prevents hibernation in the European hamster (Cricetus cricetus). Proc. Natl. Acad. Sci. (USA) 86: 6408-6411, 1989.
    Hernando F, Schoots O, Lolait SJ and Burbach JPH. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 142(4): 1659-1668, 2001.
    Hertz L, Chen Y and Spatz M. Involvement of non-neuronal brain cells in AVP-mediated regulation of water space at the cellular, organ, and whole-body level. J. Neurosci. Res. 62: 480–490, 2000.
    Hirsch AT, Dzau VJ, Majzoub JA and Creager MA. Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J. Clin. Invest. 84: 418-426, 1989.
    Hornby PJ. Central neurocircuitry associated with emesis. Am. J. Med. 111: 106S-112S, 2001.
    Hosli L, Hosli E, Lefkovits M and Wagner S. Electrophysiological evidence for the existence of receptors for endothelin and vasopressin on cultured astrocytes of rat spinal cord and brainstem. Neurosci. Lett. 131: 193-195, 1991.
    Hruby VJ, Al-Obeidi F and Kazmierski W. Emerging approaches in the molectilar design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. Biochem. J. 268: 249-262, 1990.
    Hwang JC and Chen SM. The effect of vasopressin on respiratory mechanics in the rat. Biol. Bull. NTNU. 12: 15-22, 1977.
    Ikegaya Y and Matsuki N. Vasopressin induces emesis in Suncus murinus. Jpn. J. Pharmacol. 89: 324-326, 2002.
    Inder WJ, Hellemans J, Swanney M P, Prickett TCR and Donald R A. Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes. J. Appl. Physiol. 85: 836-841, 1998.
    Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M and Sawyer WH. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol. Pharmacol. 30(2): 171-177, 1986.
    Jard S and Barberis C. Stimulus-response coupling in neurohypophysial peptide target cells. Physiol. Rev. 55: 489-536, 1989.
    Jin HK, Chen YF, Yang RH, McKenna TM, Jackson RM and Oparil S. Vasopressin lowers pulmonary-artery pressure in hypoxic rats by releasing atrial natriuretic peptide. Am. J. Med. Sci. 298: 227-236, 1989.
    Joels M and Urban IJA. Arginine8 –vasopressin enhances responses of lateral septal neurons in the rat to excitatory aminoacids and fimbria-fornix stimuli. Brain Res. 311: 201-209. 1984.
    Jordan D and Spyer KM. Is presynaptic inhibition responsible for suppression of the baroreceptor reflex during the defence reaction [proceedings]. J. Physiol. 271(2): 58P-59P, 1977.
    Kalia M and Mesulam MM. Brain stem projection of sensory and motor components of the vagus complex in the cat. Ⅰ. The cervical vagus and nodose ganglion. J. Comp. Neurol. 193: 453-465, 1980.
    Kalia M and Welles RV. Brain stem projections of the aortic nerve in the cat: a study using tetramethylbenzidine as the substrate for horseradish peroxidase. Brain Res. 188: 23-32, 1980.
    Kam PCA, Williams S and Yoong FFY. Vasopressin and terlipressin: pharmacology and its clinical relevance. Anaesthesia. 59: 993-1001, 2004.
    Kamp TJ and Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87: 1095-1102, 2000.
    Katay L, Latzkovits L, Fonagy A, Janka Z and Lajtha A. Effects of arginine vasopressin and atriopeptin on chloride uptake in cultured astroglia. Neurochem. Res. 23: 831–836, 1998.
    Kaufman S. Role of right atrial receptors in the control of drinking in the rat. J. Physiol. 349: 389-396, 1984.
    Kc P, Haxhiu MA, Tolentino-Silva FP, Wu M, Trouth CO and Mack SO. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir. Physiol. Neurobiol. 133: 75-88, 2002.
    Kingsley BP, Vaughan MS, Vaughan RW. Cardiovascular effects of nondepolarizing relaxants employed for pretreatment prior to succinylcholine. Can. Anaesth. Soc. J. 31(1): 13-19, 1984.
    Klingbeil CK, Keil LC, Chang D and Reid IA. Effects of CRF and ANG II on ACTH and vasopressin release in conscious dogs. Am. J. Physiol. 255: E46-E53, 1988.
    Klussmann E and Rosenthal W. Role and identification of protein kinase A anchoring proteins in vasopressin-mediated aquaporin-2 translocation. Kidney Int. 60: 446-449, 2001.
    Koshimizu T, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, Adachi T, Tanaka T, Kuwaki T, Mori T, Takeo S, Okamura H and Tsujimoto G. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc. Natl. Acad. Sci. (USA) 103: 7807-7812, 2006.
    László FA, Varga C, Pávó I, Gardi J, Vecsernyés M, Gálfi M, Morschl É, László F, and Makara GB. Vasopressin pressor receptor-mediated activation of HPA axis by acute ethanol stress in rats. Am. J. Physiol. 280: R458-R465, 2001.
    Lawrence AJ and Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog. Neurobiol. 48: 21-53, 1996.
    Le Beau AP and Mason DR. The effects of a chemically diverse range of calcium channel antagonists on the AVP-stimulated ACTH response in ovine corticotrophs. Cell Calcium. 15: 47-58, 1994.
    Leaney JL, Dekker LV and Tinker A. Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca2+-independent protein kinase C. J. Physiol. 534: 367-379, 2001.
    Lee MW and Severson DL. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am. J. Physiol. 267: C659-678, 1994.
    Leng G, Brown CH and Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog. Neurobiol. 57: 625-655, 1999.
    Leslie RA and Gwyn DG. Neuronal connections of the area postrema. Fed. Proc. 43: 2841-2943, 1984.
    Leslie RA. Comparative aspects of the area postrema: fine-structural considerations help to determine its function. Cell Mol. Neurobiol. 6: 95-120, 1986.
    Levy A, Lightman SL, Hoyland J and Mason WT. Inositol phospholipid turnover and intracellular Ca++ responses to thyrotropin-releasing hormone, gonadotropin-releasing hormone and arginine vasopressin in pituitary corticotroph and somatotroph adenomas. Clin. Endocrinol. 33: 73-79, 1990.
    Li Y, Shiels AJ, Maszak G and Byron KL. Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D. Am. J. Physiol. 280, H2658-H2664, 2001.
    Lin HC, Wan FJ, Tung CS and Tseng CJ. Adenosine and glutamate modulate the cardiovascular responses of angiotensins II and III in the area postrema of rats. J. Auton. Nerv. Syst. 51: 19-26, 1995.
    Lipski J, Bellingham MC, West MJ and Pilowsky P. Limitations of the technique of excitatory amine acid for the CNS. J. Neurosci. Meth. 26:169-179, 1988.
    Liviakis LR and Stebbins CL. Static contraction causes a reflex-induced release of arginine vasopressin in anesthetized cats. Brain Res. Bull. 53: 233-238, 2000.
    Liu JP. Studies of the mechanisms of action of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the ovine anterior pituitary: evidence that CRF and AVP stimulate protein phosphorylation and dephosphorylation. Mol. Cell Endocrinol. 106: 57-66, 1994.
    Loewy AD. Central autonomic pathways. In: Loewy AD, Spyer KM , editors. Central regulation of autonomic functions. New York: Oxford University Press. 88-103, 1990.
    Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Scott Young III W, Mezey E and Brownstein M. Extrapituitary expression of the rat V1B vasopressin receptor gene. Proc. Natl. Acad. Sci. (USA) 92: 6783–6787. 1995.
    Long, Q, Hay M, and Bishop VS. Administration of AVP to the area postrema alters response of NTS neurons to afferent inputs. Am. J. Physiol. 272: R519-R525, 1997.
    Losavio A and Muchnik S. Role of L-type and N-type voltage-dependent calcium channels (VDCCs) on spontaneous acetylcholine release at the mammalian neuromuscular junction. Ann. N.Y. Acad. Sci. 841: 636-645, 1998.
    Lowes VL, McLean LE, Kasting NW and Ferguson AV. Cardiovascular consequences of microinjection of vasopressin and angiotensin II in the area postrema. Am. J. Physiol. 265:R625-R631, 1993.
    Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ and Roufogalis BD. Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium. 35: 471-478, 2004.
    Mangiapane ML, Bruner CA and Fink GD. Area postrema (AP): role in control of atria1 pressure and regional vascular resistance in the rat. Fed. Proc. 44: 1346, 1985.
    Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK and Schmid PG. Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology. 21: 687-693, 1982.
    Matsukawa S and Reid IA. Role of the area postrema in the modulation of the baroreflex control of heart rate by angiotensin II. Circ. Res. 67: 1462-1473, 1990.
    Matsumura K, Averill DB, and Ferrario CM. Role of AT1 receptors in area postrema on baroreceptor reflex in spontaneously hypertensive rats. Brain Res. 850: 166-172, 1999.
    Mendelsohn FA, Quirion R, Saavedra JM, Aguilera G and Catt KJ. Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. (USA) 81(5): 1575-1579, 1984.
    Michelini LC. Endogenous vasopressin and the central control of heart rate during dynamic exercise. Brazilian J. Med. Biol. Res. 31: 1185-1195, 1998.
    Migita K, Hori N, Manako JI, Saito R, Takano Y and Kamiga HO. Effect of arginine-vasopressin on neuronal interaction from the area postrema to nucleus tractus solitarii in rat brain slices. Neuros. Lett. 256: 45-48, 1997.
    Mihara T, Tarumi T, Sugimoto Y, Chen Z and Kamei C. [Arg8]-vasopressin-induced increase in intracellular Ca2+ concentration in cultured rat hippocampal neurons. Brain Res. Bull. 49: 343-347, 1999.
    Mutolo D, Bongianni F, Carfý M and Pantaleo T. Respiratory responses to thyrotropin-releasing hormone microinjected into the rabbit medulla oblongata. Am. J. Physiol. 277: R1331-R1338, 1999.
    Nagano M, Ashidate N, Yamamoto K, Ishimizu Y, Saitoh S, Konishi Y, Koga T and Fukuda H. Excitatory neurotoxic properties of pontamine sky blue make it a useful tool for examining the functions of focal brain parts. Jan. J. Physiol. 54: 61-70, 2004.
    Naruse K and King GL. Protein kinase C and myocardial biology and function. Circ. Res. 86: 1104-1106, 2000.
    O’Donnell ME, Duong V, Suvatne J, Foroutan S, and Johnson DM. Arginine vasopressin stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransporter activity is V1 receptor and [Ca2+] dependent. Am. J. Physiol. 289: C283-C292, 2005.
    Oldfield BJ, Badoer E, Hards DK and McKinley MJ. Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neurosci. 60(1): 255-262, 1994.
    O’Leary S, Rossi NF and Churchill FC. Muscle metaboreflex control of vasopressin and renin release. Am. J. Physiol. 264: H1422-H1427, 1993.
    Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ and Young WS. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kiney, pituitary and brain. Endocrinology. 131: 533-535, 1992.
    Ostrowski NL, Lolait SJ and Young WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acids in adult male rat brain, pineal, and brain vasculature. Endocrinology. 135: 1511-1528, 1994.
    Ota M, Crofton JT and Share L. Hemorrhage-induced vasopressin release in the paraventricular nucleus measured by in vivo microdialysis. Brain Res. 659: 49-54, 1994.
    Otsuka A, Barnes KL and Ferrario CM. Contribution of area postrema to pressor actions of angiotensin II in dog. Am. J. Physiol. Heart Circ. Physiol. 251: H538-H546, 1986.
    Panganamala RV, Sharma HM, Heikkila RE, Geer JC and Cornwell DG. Role of hydroxyl radical scavengers, dimethyl sulfoxide, alcohols and methional in the inhibition of prostaglandin biosynthesis. Prostaglandins. 11: 599-607, 1976.
    Papas S and Ferguson AV. Electrophysiological characterization of reciprocal connections between the parabrachial nucleus and the area postrema in the rat. Brain Res. Bull. 24: 577-582, 1990.
    Papas S and Ferguson AV. Electrophysiological evidence of baroreceptor input to area postrema. Am. J. Physiol. 261: R9-R13, 1991.
    Parcell S and Cand ND. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 7(1), 22-44, 2002.
    Paxinos G and Watson C. The rat brain in stereotaxic coordinates 2nd ed. New York: Academic Press. 1986.
    Peuler JD, Edwards GL, Schmid PG and Johnson AK. Area postrema and differential reflex effects of vasopressin and phenylephrine in rats. Am. J. Physiol. 258: H1255-Hl259, 1990.
    Philips PA, Kelly JM, Abrahams JM, Grzonka Z, Paxinos G, Mendelsohn FAO and Johnston CI. Vasopressin receptors in rat brain and kidney: studies using a radio-iodinated V1 receptor antagonist. J. Hypertens. Suppl. 6(4): S550-553, 1988.
    Pilowsky PM. Neurotransmission in central cardiovascular control 10 suggestions for microinjections. Hypertension. 43: 945-946, 2004.
    Pittman QJ, Naylor A, Poulin P, Disturnal J, Veale WL, Martin SM, Malkinson TJ and Mathieson B. The role of vasopressin as an antipyretic in the ventral septal area and its possible involvement in convulsive disorders. Brain Res. Bull. 20: 887-892, 1988.
    Plowey ED and Waldrop TG. Cobalt injections into the pedunculopontine nuclei attenuate the reflex diaphragmatic responses to muscle contraction in rats. J. Appl. Physiol. 96: 301-307, 2004.
    Porter JP and Brody MJ. Spinal vasopressin mechanisms of cardiovascular regulation. Am. J. Physiol. 251:501-507, 1986.
    Porzionato P, Macchi V, Parenti A and De Caro R. The distribution of mast cells in the human area postrema. J. Anat. 204: 141-147, 2004.
    Poulain DA and Wakerley JB. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neurosci. 7(4): 773-808, 1982.
    Pouzet B, Gal CSL, Bouby N, Maffrand JP, Fur GL and Bankir L. Selective blockade of vasopressin V2 receptors reveals significant V2-mediated water reabsorption in Brattleboro rats with diabetes insipidus. Nephrol. Dial. Transplant. 16: 725-734, 2001.
    Qadri F, Waldmann T, Wolf A, Hohle S, Rascher W and Unger T. Differential contribution of angiotensinergic and cholinergic receptors in the hypothalamic paraventricular nucleus to osmotically induced AVP release. Pharmacol. Exp. Ther. 285(3): 1012-1018, 1998.
    Qu L, Hay M and Bishop VS. Adiminstration of AVP to the area postrema alters response of NTS neurons to afferent inputs. Am. J. Physiol. 272: R519-R525, 1997.
    Quail AW, Woods RL and Korner PI. Cardiac and arterial baroreceptor influences in release of vasopressin and renin during hemorrhage. Am. J. Physiol. 252: H1120-H1126, 1987.
    Raggenbass M, Tribollet E, Dubois-Dauphin M and Dreifuss JJ. Vasopressin receptors of the vasopressor (V1) type in the nucleus of the solitary tract. J. Neurosci. 9: 3929-3936, 1989.
    Reid MB and Moody MR. Dimethyl sulfoxide depresses skeletal muscle contractility. J. Appl. Physiol. 76: 2186-2190, 1994.
    Riedel G and Reymann KG. Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol. Scand. 157: 1-19, 1996.
    Roseth S, Fykse EM and Fonnum F. Uptake of l-Glutamate into Rat Brain Synaptic Vesicles: Effect of Inhibitors that Bind Specifically to the Glutamate. Transporter. J. Neurochem. 65: 96-103, 1995.
    Roth BL, Ciaranello RD and Meltzer HY. Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J. Pharmacol. Exp. Ther. 260: 1361-1365, 1992.
    Sabatier N, Richard P and Dayanithi G. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus. J. Physiol. 503: 253-268, 1997.
    Sabatier N, Richard P and Dayanithi G. Activation of multiple intracellular transduction signals by vasopressin in vasopressin-sensitive neurons of the rat supraoptic nucleus. J. Physiol. 513: 699-710, 1998.
    Saito M, Sugimoto T, Tahara A and Kawashima H. Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extrapituitary tissues. Biochem. Biophys. Res. Commun. 212: 751-757, 1995.
    Sanderford MG and Bishop VS. Central mechanisms of acute ANG II modulation of arterial baroreflex control of renal sympathetic nerve activity. Am. J. Physiol. 282: H1592-H1602, 2002.
    Schäfer H, Diebel J, Arlt A, Trauzold A and Schmidt WE. The promoter of human p22/PACAP response gene 1 (PRG1) contains functional binding sites for the p53 tumor suppressor and for NFkappaB. FEBS Lett. 436: 139-143, 1998.
    Schaefer Franz, Yoon SA, Nouri P, Tsao T, Tummala P, Deng E and Rabkin R. Growth Hormone–Mediated Janus Associated Kinase–Signal Transducers and Activators of Transcription Signaling in the Growth Hormone–Resistant Potassium-Deficient Rat. J. Am. Soc. Nephrol. 15: 2299-2306, 2004.
    Scott LV and Dinan TG. Vasopressin and the regulation of hypothalamic- pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci. 62: 1985-1998, 1998.
    Seiders EP and Stuesse SL. A horseradish peroxidase investigation of carotid sinus nerve components in the rat. Neurosci. Lett. 46: 13-18, 1984.
    Shapiro RE and Miselis RR. The central neural connections of the area postrema of the rat. J. Comp. Neurol. 234: 344-364, 1985.
    Shioda S, Nakai Y, Iwase M, and Homma I. Electron microscopic studies of medullary synaptic inputs to vasopressin-containing neurons in the hypothalamic paraventricular nucleus. J. Electron Microscopy. 39(6): 501-507, 1990.
    Simard M and Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 129: 877-896, 2004.
    Sipido KR and Marban E. L-type calcium channels, potassium channels and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ. Res. 69: 1487-1499, 1991.
    Smith PM and Ferguson AV. Paraventricular nucleus efferents influence area postrema neurons. Am. J. Physiol. 270: 342-347, 1996.
    Smith PM and Ferguson AV. Vasopressin acts in the subfornical organ to decrease blood pressure. Neuroendocrinology. 66(2): 130-5, 1997.
    Smith AM, Elliot CM, Kiely DG and Channer KS. The role of vasopressin in cardiorespiratory arrest and pulmonary hypertension. QJM: An International Journal of Medicine. 99(3): 127-133, 2006.
    Sonntag M, Schälike W and Brattström A. Cardiovascular effects of vasopressin micro-injections into the nucleus tractus solitarii in normotensive and hypertensive rats. J. Hypertens. 8(5): 417-21, 1990.
    Srinivasan M, Bongianni F, Fontana GA and Pantaleo T. Respiratory responses to electrical and chemical stimulation of the area postrema in the rabbit. J. Physiol. 463: 409-420, 1993.
    St John WM, Bledsoe TA and Sokol HW. Identificaion of medullary loci critical for neurogenesis of gasping. J. Appl. Physiol. 56: 1008-1019, 1984.
    Starbuck EM, Wilson WL and Fitts DA. Fos-like immunoreactivity and thirst following hyperosmotic loading in rats with subdiaphragmatic vagotomy. Brain Res. 931(2): 159-167, 2002.
    Stebbins CL and Symons JD. Vasopressin contributes to the cardiovascular response to dynamic exercise. Am. J. Physiol. 264: H1701-H1707, 1993.
    Stebbins CL, Bonigut S, Liviakis LR and Munch PA. Vasopressin acts in the area postrema to attenuate the exercise pressor reflex in anesthetized cats. Am. J. Physiol. 274: H2116-H2122, 1998.
    Sullivan J, Fuller D and Fregosi RF. Control of nasal dilator muscle activities during exercise: role of nasopharyngeal afferents. J. Appl. Physiol. 80: 1520-1527, 1996.
    Sun D, and O'Donnell ME. Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells. Am. J. Physiol. 271: C620-C627, 1996.
    Sun K and Ferguson AV. Cholecystokinin activates area postrema neurons in rat brain slices. Am. J. Physiol. 272: R1625-R1630, 1997.
    Suzuki S, Takeshita A, Imaizumi T, Hirooka Y, Yoshida M, Ando S and Nakamura M. Central nervous system mechanisms involved in inhibition of renal sympathetic nerve activity induced by arginine vasopressin. Circ. Res. 65: 1390-1399, 1989.
    Szot P, Bale TL and Dorsa DM. Distribution of RNA for the vasopressin V1a receptor in the CNS of male and female rats. Mol. Brain Res. 24: 1-10, 1994.
    Talior H, Tennenbaum T, Kuroki T and Eldar-Finkelman H. PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am. J. Physiol. 288: E405-E411, 2004.
    Tang FR and Sim MK. Metabotropic glutamate receptor subtype-1α (mGluR1α) immunoreactivity in ependymal cells of the rat caudal medulla oblongata and spinal cord. Neurosci. Lett. 225: 177-180, 1997.
    Tatewaki M, Strickland C, Fukuda H, Tsuchida D, Hoshino E, Pappas TN and Takahashi T. Effects of acupuncture on vasopressin-induced emesis in conscious dogs. Am. J. Physiol. 288: R401-R408, 2005.
    Tian B and Hartle DK. Cardiovascular effects of NMDA and MK-801 infusion at area postrema and mNTS in rat. Pharmacol. Biochem. Behav. 49(3): 489-495, 1994.
    Tribollet E, Barberis C, Jard S, Dubois-Dauphin M and Dreifuss JJ. Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography, Brain Res. 442: 105-118, 1988.
    Tsai CY, Wu CC, Lee KZ and Hwang JC. Muscarinic M2 receptor mediates bradycardia and hypotension induced by capsaicin administration in the rat. BioFormosa. 40(1): 25-35, 2005.
    Tseng YL, Wu JS and Hwang JC. Arginine vasopressin reduces respireatory-related activity of the alae nasi muscle in rats. BioFormosa. 38 (1): 37-47, 2003.
    Undesser KP, Pan JY, Lynn MP and Bishop VS. Baroreflex control of sympathetic nerve activity after elevations of pressure in conscious rabbits. Am. J. Physiol. 248, H827-H834, 1985.
    van der Kooy and Koda LY. Organization of the projections of a circumventricular organ: the area postrema in the rat. J. Comp. Neurol. 219: 328–338, 1983.
    Van Giersbergen PLM, Palkovits M and De Jong W. Involvement of neurotransmitters in the nucleus tractus solitarii in cardiovascular regulation. Physiol. Rev. 72: 789-824, 1992.
    Varma S, Jaju BP and Bhargava KP. Mechanism of Vasopressin-induced Bradycardia in Dags. Circ. Res. 24: 787-792, 1969.
    Von Euler C. Brain stem mechanisms for generation and control of breathing pattern. In: (Cherniack NJ and Widdicombe JG) American Physiological Society: Handbook of Physiology II: 1-68. Baltimore, MD: Williams & Wilkins co. 1-68, 1986.
    Wallach JJ and Loewy AD. Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res. 188: 247-251, 1980.
    Walker BR, Haynes J, Wang HL and Voelkel NF. Vasopressin-induced pulmonary vasodilation in rats. Am. J. Physiol. 257: H415-H422, 1989.
    Walker JK and Jennings DB. Angiotensin mediates stimulation of ventilation after vasopressin V1 receptor blockade. J. Appl. Physiol. 76: 2517-2526, 1994.
    Walker JKL and Jennings DB. During acute hypercapnia vasopressin inhibits an angiotensin drive to ventilation in conscious dogs. J. Appl. Physiol. 79: 786-794, 1995.
    Wallenstein S, Zucker CL and Fleiss JL. Some statistical methods useful in circulation research. Circ. Res. 47: 1-9, 1980.
    Wallk M and Gross PM. Efferent microvascular responses to electrical stimulation of the area postrema in rats. Brain Res. 579(1): 50-58, 1992.
    Watters JJ, Poulin P and Dorsa DM. Steroid hormone regulation of vasopressinergic neurotransmission in the central nervous system. Prog. Brain Res. 119: 247–261, 1998.
    Webb RL, Osborn JW and Cowley AW. Cardiovascular actions of vasopressin: baroreflex modulation in the conscious rat. Am. J. Physiol. 251: H1244-H1251, 1986.
    Weindl A and Sofroniew MV. Neurohormone and circumventricular organs. In: Brain-endocrine interaction. III. Neural hormones and reproduction. 3rd International Symposium, Wtltxnuth, 117-137, 1978.
    Wen Y, Nadler JL, Gonzales N, Scott S, Clauser E and Natarajan R. Mechanisms of Ang II-induced mitogenic responses: Role of 12-lipoxygenase and biphasic MAP kinase. Am. J. Physiol. 271: C1212-C1220, 1996.
    Wilson CG and Bonham AC. Area postrema excites and inhibits sympathetic-related neurons in rostra1 ventrolateral medulla in rabbit. Am. J. Physiol. 266: H1075-H1086, 1994.
    Winslow J, Hastings N, Carter CS, Harbaugh C and Insel T. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature. 365:545-548, 1993.
    Wong J, Chou L, and Reid IA. Role of AT1 Receptors in the Resetting of the Baroreflex Control of Heart Rate by Angiotensin II in the Rabbit. J. Clin. Invest. 91: 1516-1520, 1993.
    Wun T, Paglieroni T and Lachant NA. Physiologic concentrations of arginine vasopressin activate human platelets in vitro. Brit. J. Haematol. 92: 968-972, 1996.
    Yang SJ, Lee KZ, Wu JS, Lu KT and Hwang JC. Vasopressin produces inhibition on phrenic nerve activity and apnea through V1A receptors in the area postrema in rats. Chin. J. Physiol. 49(6): 1-13, 2006.
    Ylitalo P, Karppanen H and Paasonen MK. Is the area postrema a control centre of blood pressure? Nature. 247: 58–59, 1974.
    Zacour ME and Martin JG. Protein kinase C is involved in enhanced airway smooth muscle cell growth in hyperresponsive rats. Am. J. Physiol. 278: L59-L67, 2000.
    Zhang W and Mifflin SW. Excitatory amino acid receptors within NTS mediate arterial chemoreceptor reflexes in rats. Am. J. Physiol. 265: H770-H773, 1993.
    Zhoa L and Brinton RD. Vasopressin-induced cytoplasmic and nuclear calcium signaling in cultured cortical astrocytes. Brain Res. 943: 117-131, 2002.
    Zhu Q, Guo SY, Gong S, Yin QZ, Hisamitsu T and Jiang XH. Losartan blocks the excitatory effect of peripheral hypertonic stimulation on vasopressinergic neurons in hypothalamic paraventricular nucleus in rats: electrophysiological and immunocytochemical evidence Neurosci. Lett. 380(1-2): 12-16, 2005.

    QR CODE