研究生: |
高悅慈 Kao, Yueh-Tzu |
---|---|
論文名稱: |
探討三氟敏 (Trifloxystrobin) 對斑馬魚胚胎離子調節、循環系統和感覺行為之影響 Effects of trifloxystrobin on ion regulation, circulatory system and sensory behavior of zebrafish embryos |
指導教授: |
林豊益
Lin, Li-Yih |
口試委員: |
林豊益
Lin, Li-Yih 洪君琳 Horng, Jiun-Lin 周銘翊 Chou, Ming-Yi |
口試日期: | 2024/06/18 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 斑馬魚 、三氟敏 、基因組學 、感覺運動反應 |
英文關鍵詞: | Zebrafish, Trifloxystrobin, Transcriptomics, Sensorimotor responses |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400768 |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三氟敏是一種被廣泛使用的甲氧基丙烯酸酯類除真菌劑。在三氟敏的過度使用下,已有研究證明其在環境中的殘留及對水生生物的風險。為了全面了解三氟敏對非目標生物的毒性作用及機制,本研究選擇斑馬魚作為實驗動物,探討其對胚胎之致死性、離子調節功能、感覺系統、循環系統及基因表達的影響。實驗將受精後4小時的胚胎暴露於0、100、200和300 ppb的三氟敏溶液中,持續96或120小時。結果顯示,濃度高於200 ppb會降低胚胎存活率和孵化率。同時,離子細胞數量及胚胎體內的Na+、K+和Ca2+水平顯著減少,表明其對離子調節功能產生了負面影響。在循環系統,除了圍心腔水腫、和心率降低,還造成了心室收縮力增加、心室血液逆流和血流流速變慢等心血管損傷。此外,本研究還揭示了三氟敏的感覺系統毒性,其不僅導致側線毛細胞數量減少,眼睛、耳石和耳石囊變小,通過行為反應實驗,還證實了側線感覺、聽覺、視覺和嗅覺功能亦受到損害。綜上所述,本研究闡明了三氟敏對斑馬魚胚胎的多種毒性作用,並透過RNA定序,從基因層面對其可能機制進行探討。
Trifloxystrobin is a widely used strobilurin fungicide. Due to overuse, residues in the environment and risks to aquatic organisms have been identified. In order to comprehensively understand the toxic effects and mechanisms of trifloxystrobin on non-target organisms, zebrafish were selected as experimental animals to investigate basic toxicity, ion regulation, sensory system, circulatory system, and gene expression in this study. In the experiment, embryos were initially exposed at 4 hours post-fertilization to trifloxystrobin solutions at 0, 100, 200, and 300 ppb for 96 or 120 hours. The results showed that concentrations above 200 ppb decreased survival and hatchability. It also reduced the number of ionocytes and the levels of Na+, K+, and Ca2+ in the embryos, indicating a negative effect on ion regulatory function. In the sensory system, a reduction in lateral line hair cells and in the size of eyes, otoliths and otic vesicles was observed. Subsequent behavioral tests confirmed the impairment of lateral line sensory, auditory, visual and olfactory functions by trifloxystrobin. Furthermore, in addition to pericardial edema and decreased heart rate, it also causes cardiovascular damage such as increased ventricular contractility, ventricular blood reflux, and slowed blood flow velocity. In conclusion, this study clarified the various toxic effects of trifloxystrobin on zebrafish embryos and explored its possible mechanisms at the genetic level through RNA sequencing.
Abbas, L. & Whitfield, T. T. (2010). The zebrafish inner ear. Fish Physiol, 29, 123-171.
Alex, M. Z. & Steve, F. P. (2020). The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish (Danio rerio). Comp, 247, 110722.
André, S., Jana, H., Walter, S., Christoph, B. P. (2010). Let It Flow: morpholino knockdown in zebrafish embryos reveals a pro-angiogenic effect of the metalloprotease meprin α2. PLOS, 5 (1), e8835.
Babak, R., Shelby, L. S., Sergey, V. P., Matthew, R. S., Jessica, A. H., Matthew, D. C., Lindsay, M., William, L., Mads, D., Nicolas, C., Simi, C., Stephen, M. L., Ian, C. S., Poul, H. B. S., Jason, N. B. (2017). hace1 Influences zebrafish cardiac development via ROS-dependent mechanisms. Dev. Dyn., 247 (2), 289-303.
Bauer, B., Mally, A., Liedtke, D. (2021). Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int. J. Mol. Sci., 22 (24), 13417.
Bayaa, M., Vulesevic, B., Esbaugh, A., Braun, M., Ekker, M. E., Grosell, M., & Perry, S. F. (2009). The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J. Exp. Biol., 212 (20), 3283-3295.
Bowley, G., Kugler, E., Wilkinson, R., Lawrie, A., Eeden, F. v., Chico, T. J. A., Evans, P., C., Noël, E. S., Serbanovic-Canic, J. (2022). Zebrafish as a tractable model of human cardiovascular disease. Br. J. Pharmacol., 179 (5), 900-917.
Brian, B., Agnes, D., Victor, C., Wendy, B., Christine, T., Bernard, T., Manzoor-Ali, P.K. M., Robert, L. (2003). Differential expression of Na,K-ATPase α and β subunit genes in the developing zebrafish inner ear. Dev. Dyn., 228 (3), 386-382.
Brian, B., Victor, A. C., Melissa, A. V., David, H., Manzoor-Ali, P.K. M., J. David, D., Cheng, K. C., Donna, M. F., Robert, L. (2006). Separate Na,K-ATPase genes are required for otolith formation and semicircular canal development in zebrafish. Dev. Biol., 294 (1), 148-160.
Burgess, H. A., Johnson, S. L., Granato, M. (2009). Unidirectional startle responses and disrupted left–right co‐ordination of motor behaviors in robo3 mutant zebrafish. Genes, Brain Behav., 8 (5), 500-511.
Cao, M., Li, S., Wang, Q., Wei, P., Liu, Y., Zhu G., Wang, M. (2015). Track of fate and primary metabolism of trifloxystrobin in rice paddy ecosystem. Sci. Total Environ., 518–519, 417-423.
Chen, L., Luo, Y., Zhang, C., Liu, X., Fang, N., Wang, X., Zhao, X., Jiang, J. (2024). Trifloxystrobin induced developmental toxicity by disturbing the ABC transporters, carbohydrate and lipid metabolism in adult zebrafish. Chemosphere, 349, 140747.
Chhetri, J, G. J., Gueven, N. (2014). Zebrafish—on the move towards ophthalmological research. Eye, 28 (4), 367-380.
Chico, Ingham, P. W., Crossman, D. C. (2008). Modeling cardiovascular disease in the zebrafish. Trends Cardivas Med, 18 (4), 150-155.
Chitnis, A. B., Nogare, D. D., Matsuda, M. (2011). Building the posterior lateral line system in zebrafish. Dev. Neurobiol., 72 (3), 234-255.
Chiu, L. L., Cunningham, L. L., Raible, D. W., Rubel, E. W., Ou, H. C. (2008). Using the zebrafish lateral line to screen for ototoxicity. JARO, 9, 178-190.
Colwill, R. M. & R. C. (2011). Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav. Processes, 86 (2), 222-229.
Cui, F., Chai, T., Liu, X., Wang, C. (2016). Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna. Environ. Toxicol. Chem., 36 (1), 182-189.
Eberlein, H., L., Malchow, J., Rittershaus, A., Baumeister, S., Helker, C. S. (2021). Molecular and cellular mechanisms of vascular development in zebrafish. Life, 11 (10), 1088.
Fadool, J. M. & Dowling, J. E. (2008). Zebrafish: a model system for the study of eye genetics. Prog. Retin. Eye Res., 27 (1), 89-110.
Fettiplace, R. (2011). Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Comp. Physiol., 7 (4), 1197-1227.
Goldsmith, P. & Harris, W. (2003). The zebrafish as a tool for understanding the biology of visual disorders. Seminars in cell & Devt. Biol., 14 (1), 11-18.
Gore, Monzo, K., Cha, Y. R., Pan, W., Weinstein, B. M. (2012). Vascular development in the zebrafish. Cold Spring Harb. Perspect. Med., 2 (5), a006684.
Guh, Y. J. & Hwang, P. P. (2017). Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen. Comp. Endocrinol., 251, 12-20.
Guh, Y. J., Lin, C. H., Hwang, P. P. (2015). Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J., 14, 627–659.
Herrera, K. J., Panier, T., Guggiana-Nilo, D., Engert, F. (2020). Larval Zebrafish Use Olfactory Detection of Sodium and Chloride to Avoid Salt Water. Curr. Biol., 31, 782–793.
Horng, J. L., Kung, G. X., Lin, L. Y. (2024). Acidified water promotes silver-induced toxicity in zebrafish embryos. Aquat. Toxicol., 268, 106865.
Horng, J.-L., Yu, L.-L., Liu, S.-T., Chen, P.-Y., & Lin, L.-Y. (2017). Potassium regulation in Medaka (Oryzias latipes) larvae acclimated to fresh water: Passive uptake and active secretion by the skin cells. Scientific Reports,7, 16215.
Hsiao, B. Y., Horng, J. L., Yu, C. H., Lin, W. T., Wang, Y. H., Lin, L. Y. (2024). Assessing cardiovascular toxicity in zebrafish embryos exposed to copper nanoparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 227, 109838.
Hughes, I., Thalmann I., Thalmann, R., Ornitz, D. M. (2006). Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res. 1091 (1), 58-74.
Hung, G.-Y., Wu, C.-L., Chou, Y.-L., Chien, C.-T., Horng, J.-L., Lin, L.-Y. (2019). Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. Aquat. Toxicol., 209, 168-177.
Hung, G.-Y., Wu, C.-L., Motoyama, C., Horng, J.-L., & Lin, L.-Y. (2022). Zebrafish embryos as an in vivo model to investigate cisplatin-induced oxidative stress and apoptosis in mitochondrion-rich ionocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 259, 109395.
Hwang P.P (2009).Ion uptake and acid secretion in zebrafish (Danio rerio). J. Exp. Biol., 212 (11), 1745–1752.
Hwang, P. P. & Chou, M. Yi. (2013). Zebrafish as an animal model to study ion homeostasis. Pflugers Arch. Eur. J. Physiol., 465, 1233–1247.
Jason, P. B., Sandy, B. S., Vincent, G., Stephen, D. M., Rolf, O. K. (2013). Prolactin regulates transcription of the ion uptake Na+/Cl− cotransporter (ncc) gene in zebrafish gill. Mol. Cell. Endocrinol., 369, 98-106.
Jason, R. B., Rahul, C. D., Andreas, A. W., Daniela, P., Shannon, C., Calum A. M. (2011). Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Dis. Model. Mech., 4 (3), 400–410.
Jason, R. B., Sneha, Ch., Tamara, Y. R., Jeffrey, S. B., Daniela, P., Cristi L. G., Lin, Z., Jordan, T. S., Shannon, M. C., Amy, E. K., Dan, M. R., Chee, C. L., Calum A. M. (2014). Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Dev., 141 (2), 335–345.
Jessica, A. P., Bonny, B. M., Victor, A. C., Bruce, B. R., Robert, L. (2007). Otoc1: A novel otoconin-90 ortholog required for otolith mineralization in zebrafish. Dev. Neurobiol., 68 (2), 209-222.
Jiang, J., Wu, S., Lv, L., Liu, X., Chen, L., Zhao, X., Wang, Q. (2019). Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages. Environ. Pollut., 253, 722-730.
Junges, C.M., Peltzer, P.M., Lajmanovich, R.C., Attademo, A.M., Cabagna Zenklusen, M.C., Basso, A. (2012). Toxicity of the fungicide trifloxystrobin on tadpoles and its effecton fish–tadpole interaction. Chemosphere, 87, 1348–1354.
Karra, R., Foglia, M. J., Choi, W.-Y., Poss, K. D. (2018). Vegfaa instructs cardiac muscle hyperplasia in adult zebrafish. Biological Sciences, 115 (35), 8805-8810.
Katherine, E. S., Joseph, R. K., Dana, M. G.(2010). Activating transcription factor 3 (ATF3) expression in the neural retina and optic nerve of zebrafish during optic nerve regeneration. Comp, 155 (2), 172-182.
Ledent, V. (2002). Postembryonic development of the posterior lateral line in zebrafish. Dev., 129 (3), 597–604.
Leila, A. & Tanya, T. W. (2010). The zebrafish inner ear. Fish Physiol., 29, 123-171.
Li, H., Yu, S., Cao, F. J., Wang, C. G., Zheng, M. Q., Li, X. F., Qiu, L. H. (2018). developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 151, 1-9.
Liang, B., Soka, M., Christensen, A. H., Olesen, M. S., Larsen, A. P., Knop, F. K., Wang, F., Nielsen, J. B., Andersen, M. N., Humphreys, D., Mann, S. A., Huttner, I. G., Vandenberg, J. I., Svendsen, J. H., Haunsø, S., Preiss, T., Seebohm, G., Olesen, S. P., Schmitt, N., Fatkin, D. (2014). Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J. Mol. Cell. Cardiol., 67, 69-76.
Liang, J., Wang, D., Renaud, G., Wolfsberg, T. G., Wilson, A. F., Burgess, S. M. (2012). The stat3/socs3a Pathway Is a Key Regulator of Hair Cell Regeneration in Zebrafish stat3/socs3a Pathway: Regulator of Hair Cell Regeneration. J. Neurosci., 32 (40), 14050.
Lin, L. Y., Horng, J. L., Kunkel, J. G., Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. Cell Physiol., 290, 371-378.
Liu, K. S. & Fetcho, J. R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23 (2), 325-335.
Liu, L., Jiang, C., Wu, Z. Q., Gong, Y. X., Wang, G. X. (2013). Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicol. Environ. Saf., 98 (1), 297-302.
Liu, Y.-C., Bailey, I., Hale, M. E. (2012). Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). J. Comp. Physiol., 198, 11-24.
López-Schier, H. (2019). Neuroplasticity in the acoustic startle reflex in larval zebrafish. Curr. Opin. Neurobiol., 54, 134-139.
Lu, C. J., Lv, Y. H., Kou, G. H., Liu, Y., Liu. Y., Chen, Y., Wu, X. W., Yang, F., Luo, J. J., Yang, X. j. (2022). Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 243, 113993.
Lu, Z. & DeSmidt, A. A. (2013). Early development of hearing in zebrafish. JARO 14, 509-521.
Lundberg, Y. W., Xu, Y., Thiessen, K. D., Kramer, K. L. (2015). Mechanisms of otoconia and otolith development. Dev. Dyn. 244 (3), 239-253.
Luo, X., Qin, X., Liu, Z., Chen, D., Yu, W., Zhang, K., Hu, D. (2019). Determination, residue and risk assessment of trifloxystrobin, trifloxystrobin acid and tebuconazole in Chinese rice consumption. Biomed. Chromatogr., 34, e4694.
Ma, E. Y. & Raible, D. W. (2009). Signaling pathways regulating zebrafish lateral line development. Curr. Biol., 19 (9), 381-386.
Mably, J. D. & Childs, S. J. (2010). Developmental physiology of the zebrafish cardiovascular system. Fish Physiol., 29, 249-287.
Malicki, J., Schier, A. F., Solnica-Krezel, L., Stemple, D. L., Neuhauss, S. C. F., Stainier, D. Y. R., Abdelilah, S., Rangini, Z., Zwartkruis, F., Driever, W. (1996). Mutations affecting development of the zebrafish ear. Dev., 123(1), 275-283.
McPherson, D. R. (2018). Sensory Hair Cells: An Introduction to Structure and Physiology. Integr. Comp. Biol., 58 (2), 282–300.
Medan, V. & Preuss, T. (2014). The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris, 108 (2-3), 129-140.
Mensah, G. A., Fuster, V., Murray, C. J. L., Roth, G. A., and on behalf of Global Burden of Cardiovascular Diseases and Risks Collaborators (2023). Global burden of cardiovascular diseases and risks, 1990-2022. JACC, 82 (25), 2350-2473.
Mikiko, N., Chieko, F., Kazuhiro, M., Yusuke, M., Satoru, K. (2011). HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: Its role in cell survival. Neurochem. Int., 58 (8), 888-895.
Mojib, N., Xu, J., Bartolek, Z., Imhoff, B., McCarty, N. A., Shin, C. H., Kubanek, J. (2017). Zebrafish aversive taste co-receptor is expressed in both chemo- and mechanosensory cells and plays a role in lateral line development. Scientific Reports, 7, 13475.
Morris, A. & Fadool, J. (2005). Studying rod photoreceptor development. in zebrafish. Physiol. Behav., 86 (3), 306-313.
Nagashima, M., Fujikawa, C., Mawatari, K., Mori, Y., Kato, S. (2011). HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: Its role in cell survival, Neurochem. Int., 58 (8), 888-895.
Neuhauss, S. C. (2010). Zebrafish vision: structure and function of the zebrafish visual system. Fish Physiol. Elsevier, 29, 81-122.
Nie, H. Y., Pan, M. Q., Chen, J., Yang, Q., Hung, T. C., Xing, D., Peng, M., Peng, X. T., Li, G. Y., Yan W. (2022). Titanium dioxide nanoparticles decreases bioconcentration of azoxystrobin in zebrafish larvae leading to the alleviation of cardiotoxicity. Chemosphere, 307 (3), 135977.
Novodvorsky, P., Watson, O., Gray, C., Wilkinson, R. N., Reeve, S., Smythe, C., Beniston, R., Plant, K., Maguire, R., Rothman, A. M. K., Elworthy, S., van Eeden, F. J. M., & Chico, T. J. A. (2015). Klf2ash317 mutant zebrafish do not recapitulate morpholino-induced vascular and haematopoietic phenotypes. PLOS ONE, 10 (10), e0141611.
Olga, Z. R., Lissiene, S. N., Florin, S., Eric, A. S.. (2014). The arginine methyltransferase NDUFAF7 is essential for complex I assembly and early vertebrate embryogenesis. Hum. Mol. Genet., 23 (19), 5159–5170.
Paolini, A. & Abdelilah-Seyfried, S. (2018). The mechanobiology of zebrafish cardiac valve leaflet formation. Curr. Opin. Cell Biol., 55, 52-58.
Popper, A. N. & Lu, Z. (2000). Structure–function relationships in fish otolith organs. Fish. Res., 46 (1-3), 15-25.
Ralf, D., Helia, S., Anne, S., Jan van, M., Gijs, F.J.M. (2007). Development and adult morphology of the eye lens in the zebrafish. Exp. Eye Res., 85 (1), 74-89.
Reuveni, M. (2001). Activity of trifloxystrobin against powdery and downy mildew diseases of grapevines. Can. J. Plant Pathol., 23 (1), 52-59.
Richardson, R., Tracey-White, D., Webster, A., Moosajee, M. (2017). The zebrafish eye—a paradigm for investigating human ocular genetics. Eye, 31 (1), 68-86.
Riley, B. B. & Moorman, S. J. (2000). Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J. Neurobiol., 43 (4), 329-337.
Roy, B., Ferdous, J., Ali, D. W. (2014). NMDA receptors on zebrafish Mauthner cells require CaMKII-α for normal development. Dev. Neurobiol., 75 (2), 109-216.
Ronco, C., Bellasi, A., & Di Lullo, L. (2018). Cardiorenal syndrome: An overview. Adv. Chronic Kidney Dis., 25(5), 382-390.
Sang Q., Zhang, J. Y., Feng, R. Z., Wang, X., Li, Q. L., Zhao, X. Z, Xing, Q. H., Chen, W. Y., Du, J. L., Sun, S., Chai, R. J., Liu, D., Jin, L., He, L., Li, H. W., Wang, L. (2014). Ildr1b is essential for semicircular canal development., migration of the posterior lateral line primordium and hearing ability in zebrafish: implications for a role in the recessive hearing impairment DFNB42. Hum. Mol. Genet., 23 (23), 6201–6211.
Sarrazin, A. F., Nuñez, Vi. A., Sapède, D., Tassin, V., Christine, D. C., Ghysen, A. (2010). Origin and early development. of the posterior lateral line system of zebrafish. J. Neurosci., 30 (24), 8234-8244.
Saul, K. E., Koke, J. R., García, D. M. (2010). Activating transcription factor 3 (ATF3) expression in the neural retina and optic nerve of zebrafish during optic nerve regeneration. Comp, 155 (2), 172-182.
Shelly, C., Jen, C. S., Bo, K. L., Chang, J. H., Hwang, P. P. (2009). Plasma membrane calcium ATPase required for semicircular canal formation and otolith growth in the zebrafish inner ear. J Exp Biol, 212 (5), 639–647.
Stainier, Fouquet, B., Chen, J. N., Warren, K. S., Weinstein, B. M., Meiler, S. E., Mohideen, M. A. P. K., Neuhauss, S. C. F., Solnica-Krezel, L., Schier, A. F., Zwartkruis F., Stemple, D. L., Malicki, J., Driever, W., Fishman, M. C. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Dev., 123 (1), 285-292.
Sztal, T. E., Ruparelia, A. A., Williams, C., Bryson-Richardson, R. J. (2016). Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish. J. Vis. Exp., 116, e54431.
Troconis, E. L., Ordoobadi, A. J., Sommers, T. F., Aziz-Bose, R., Carter, A. R., Trapani, J. G. (2017). Intensity‐dependent timing and precision of startle response latency in larval zebrafish. J. Physiol., 595 (1), 265-282.
Tyler, G. E., Yoshiyuki, Y., William, R. J., Patrick, H. K. (2005). Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones, 10 (1), 66–78.
Vinberg, F., Wang, T., De Maria, A., Zhao, H., Bassnett, S., Chen, J., Kefalov, V. J. (2017). The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision. Neuroscience, 6, e24550.
Vogel, A. M. & Weinstein, B. M. (2000). Studying vascular development. in the zebrafish. Trends Cardivas Med., 10 (8), 352-360.
Wang, H., Qiu, T., Lu, J., Liu, H. W., Hu, L., Liu, L., Chen, J. (2021). Potential aquatic environmental risks of trifloxystrobin: Enhancement of virus susceptibility in zebrafish through initiation of autophagy. Zool Res., 42 (3), 339–349.
Wang, L., William, F. S., Sang, D. K., Jordan, T. S., Calum, A. M., Leonard I, Z., Seidman, J. G., Christine, E. S. (2008). Eya4 regulation of Na+/K+-ATPase is required for sensory system development. in zebrafish. Dev., 135 (20), 3425–3434.
Wang, X., Li, X., Wang, Y., Qin, Y., Yan, B., Martyniuk, C. J. (2021). A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. Environ. Pollut., 275, 116671.
Wang, Y. X. L., Xu, Y. F., Kevin, D. T., Kenneth, L. K. (2014). Mechanisms of otoconia and otolith development. Dev. Neurobiol., 244 (3), 239-253.
Whitfield, T. T., Riley, B. B., Chiang, M. Y., Phillips, B. (2002). Development of the zebrafish inner ear. Dev. Dyn., 223 (4), 427-458.
Wightwick, A. M., Bui, A. D., Zhang, P., Rose, G., Allinson, M., Myers, J. H., Reichman, S. M., Menzies, N. W., Pettigrove, V., Allinson, G. (2012). Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Arch. , 62, 380–390.
Wu, R., Zhou, T., Wang, J., Wang, J., Du, Z., Li, B., Juhasz A., Zhu, L. (2021). Oxidative stress and DNA damage induced by trifloxystrobin on earthworms (Eisenia fetida) in two soils. Sci. Total Environ., 797, 149004.
Xiao Y. L., Qin, Y. J., Wang, Y., Huang, T., Zhao, Y. H., Wang, X. H., Martyniuk, C., Yan, B. (2021). Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio). Toxicology, 452, 152706.
Xiao, Z., Hou, K., Zhou T., Zhang J., Li B., Du Z., Sun S., Zhu L. (2023). Effects of the fungicide trifloxystrobin on the structure and function of soil bacterial community. Environ. Toxicol. Pharmacol., 99, 104104.
Xing, C., Gong, B., Xue, Y., Han, Y., Wang, Y., Meng, A., Jia, S. (2015). TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. J. Mol. Cell Biol., 7 (1), 48–61.
Yang, L., Huang, T., Li, R., Souders, C. L., Rheingold, S., Tischuk, C., Li, N., Zhou, B., Martyniuk, C. J. (2021). Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environ. Pollut., 270, 116277.
Yew, H. M., Zimmer, A. M., Perry, S. F. (2020). Assessing intracellular pH regulation in H+-ATPase-rich ionocytes in zebrafish larvae using in vivo ratiometric imaging. J. Exp. Biol., 223 (5), 212928.
Yin, G., Qian, F., Yao, J., Wang, Z., Wang, X., Liu, D., Wang, C. (2023). ftr82 is necessary for hair cell morphogenesis and auditory function during zebrafish development. J. Genet. Genomics., 50 (2), 77-86.
Zeddies, D. G. & Fay, R. R. (2005). Development of the acoustically evoked behavioral response in zebrafish to pure tones. J. Exp. Biol. 208 (7), 1363-1372.
Zhao, G., Wang, Z., Xu, L., Xia, C. X., Liu, J. X. (2019). Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos. Chemosphere, 229, 169-180.
Zhu, B., Liu, G. Lu., Liu, L. Ling, F., Wang, G. X. (2015). Assessment of trifloxystrobin uptake kinetics, developmental toxicity and mRNA expression in rare minnow embryos. Chemosphere, 120, 447-455.
Zottoli, S., Newman, B. C., Rieff, H. I., Winters. D. C. (1999). Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus). J. Comp. Physiol., 184, 207-218.