研究生: |
鄭羽軒 |
---|---|
論文名稱: |
氯化氫與氯氣在Ge(100)表面的吸附與熱分解反應 |
指導教授: | 洪偉修 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 氯化氫 、氯氣 、吸附 、熱分解 |
英文關鍵詞: | hydrogen chloride, chlorine, adsorption, thermal decomposition |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用程溫脫附質譜(TPD)及X光光電子能譜(XPS)研究氯化氫(HCl)及氯氣(Cl2)在鍺(100)表面的吸附及熱分解反應。
於105 K,曝露氯化氫於鍺表面,最初只出現分解吸附(Ge-H、Ge-Cl);當曝露量增大,伴隨有未分解吸附,依照曝露量多寡,在275 K未分解的氯化氫會分解並持續以分解吸附的型態吸附於表面;當溫度升至675 K時較弱的Ge-H鍵先斷,經由再結合形成H2、HCl脫附,而殘餘分解吸附的Cl則於700 K時Ge-Cl鍵斷裂,形成GeCl2脫附。因此氯化氫在鍺(100)表面熱分解的產物為H2、HCl、GeCl2。
為了更進一步了解氯在鍺(100)表面吸附的情形,將HCl的H置換成Cl,探討分子組成均為氯在鍺表面的吸附情形,並與氯化氫比較。發現兩者在鍺(100)表面於曝露量大時,均有未分解吸附的吸附態,但結構不同,氯氣之分子吸附態於225 K開始形成GeCl4脫附。兩者相似的是,室溫後均為分解吸附情形,故有相似的反應路徑,不同的是氯氣均為Ge-Cl吸附情形,無H存在,故於700 K時Ge-Cl鍵斷裂,形成GeCl2及微量Cl2脫附。因此氯氣在鍺(100)表面熱分解的產物為GeCl4、GeCl2、Cl2。
The adsorption and thermal reactions of hydrogen chloride (HCl) and chlorine (Cl2) on Ge(100) surface were studied with temperature- programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The desorption products of thermal reactions were monitored with TPD and the reaction intermediates were identified with XPS using synchrotron radiation.
At 105 K, HCl molecules adsorb dissociatively at the initial exposure. The molecular adsorption of HCl appears at high exposures and chemisorbed HCl molecules become dissociated at 275 K. On annealing to 675 K, surface Ge-H bonds break and desorb as H2 and HCl with recombination of H(ad)+H(ad) and H(ad)+Cl(ad). At 700 K, The Ge monochloride (GeCl) cleaves the Ge-Cl bonds to release Cl which further reacts with another Ge-Cl to desorb GeCl2. The desorption products during thermal reaction of hydrogen chloride on Ge(100) include H2, HCl, and GeCl2.
We also investigated the thermal reaction of chlorine (Cl2) on Ge(100). Similar to HCl, molecular chlorine undergoes dissociative adsorption at initial exposures, and can molecularly adsorb at high exposures. On annealing to 225 K, adsorbed Cl2 scissors the Cl-Cl bonds, resulting the formation and desorption of GeCl4. At 300 K, only Ge monochloride (GeCl) is present on the surface upon annealing to 300 K. At 700 K, the Ge-Cl further reacts and desorbs as GeCl2 as observed on the case of HCl. In addition, a trace amount of Cl2 is observed as one of the desorption products due to recombination of surface Cl(ad).
According to the TPD and XPS data, the detailed mechanisms of thermal reactions of HCl and Cl2 on Ge(100) are proposed in this dissertation.
1. http://zh.wikipedia.org/wiki/摩尔定律
2. Kamata ,Y., High- /Ge MOSFETs for future nanoelectronics. Mater. Today. 2008, 11 (1-2), 30-38.
3. Gupta, R.; Yoo, W. J.; Wang, Y. Q.; Tan, Z.; Samudra, G.; Lee, S.; Chan, D. S. H.; Loh, K. P.; Bera, L. K.; Balasubramanian, N.; Kwong, D. L., Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications. Appl. Phys. Lett. 2004, 84 (21), 4331-4333.
4. Lee, M. L.; Leitz, C. W.; Cheng, Z.; Pitera, A. J.; Langdo, T.; Currie, M. T.; Taraschi, G.; Fitzgerald, E. A.; Antoniadis, D. A., Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates. Appl. Phys. Lett. 2001, 79 (20), 3344-3346.
5. Chui, C. O.; Ramanathan, S.; Triplett, B. B.; McIntyre, P. C.; Saraswat, K. C., Germanium MOS capacitors incorporating ultrathin high-kappa gate dielectric. IEEE Electron Dev. Lett. 2002, 23 (8), 473-475.
6. Zandvliet, H. J. W., The Ge(001) surface. Phys. Rep. Rev. Sec. Phys. Lett. 2003, 388 (1), 1-40.
7. Duke, C. B., Semiconductor surface reconstruction: The structural chemistry of two-dimensional surface compounds. Chem. Rev. 1996, 96 (4), 1237-1259.
8. (a) Kevan, S. D., Surface states and reconstruction on Ge(00l). Phys. Rev. B 1985, 32 (4), 2344-2350; (b) Culbertson, R. J.; Kuk, Y.; Feldman, L. C., Subsurface strain in the Ge(001) and Ge(111) surfaces and comparison to silicon. Surf. Sci. 1986, 167 (1), 127-140.
9. Loscutoff, P. L.; Bent, S. F., Reactivity of the germanium surface: Chemical passivation and functionalization. Annu. Rev. Phys. Chem. 2006, 57, 467-495.
10. Prabhakaran, K.; Maeda, F.; Watanabe. Y.; Ogino, T. , Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces. Appl. Phys. Lett. 2000, 76 (16), 2244-2246.
11. (a) Weser, T.; Bogen, A.; Konrad, B.; Schnell, R. D.; Schug, C. A.; Moritz, W.; Steinmann, W., Chemisorption of sulfur on Ge(100). Surf. Sci. 1988, 201 (1-2), 245-256; (b) Weser, T.; Bogen, A.; Konrad, B.; Schnell, R. D.; Schug, C. A.; Steinmann, W., Photoemission surface core-level study of sulfur adsorption on Ge(100). Phys. Rev. B 1987, 35 (15), 8184-8188.
12. (a) Boonstra, A. H.; Van Ruler, J., The adsorption of various gases on clean and oxidized Ge surfaces Surf. Sci. 1966, 4 (2), 141-149; (b) Van Bommel, A. J.; Meyer, F., LEED measurement of H2S and H2Se adsorption on germanium (111). Surf. Sci. 1967, 6 (3), 391-394.
13. Nelen, L. M.; Fuller, K.; Greenlief, C. M., Adsorption and decomposition of H2S on the Ge(100) surface. Appl. Surf. Sci. 1999, 150 (1-4), 65-72.
14. Anderson, G. W.; Hanf, M. C.; Norton, P. R.; Lu, Z. H.; Graham, M. J., The S-passivation of Ge(100)-(1×1). Appl. Phys. Lett. 1995, 66 (9), 1123-1125.
15. (a) Bodlaki, D.; Yamamoto, H.; Waldeck, D. H.; Borguet, E., Ambient stability of chemically passivated germanium interfaces. Surf. Sci. 2003, 543 (1-3), 63-74; (b) Hanrath, T.; Korgel, B. A., Chemical Surface Passivation of Ge Nanowires. J. Am. Chem. Soc. 2004, 126 (47), 15466-15472; (c) Lyman, P. F.; Sakata, O.; Marasco, D.L.; Lee, T.L.; Breneman, K.D.; Keane, D.T.; Bedzyk, M.J., Structure of a passivated Ge surface prepared from aqueous solution. Surf. Sci. 2000, 462 (1-3), L594-L598.
16. Cullen, G. W.; Amick, J. A.; Gerlich, D., The stabilization of germanium surfaces by ethylation. J. Electrochem. Soc. 1962, 109, 124-127.
17. Schnell, R. D.; Himpsel, F. J.; Bogen, A.; Rieger,D.; Steinmann, W., Surface core-level shifts for clean and halogen-covered Ge(100) and Ge(111). Phy. Rev. B 1985, 32 (12), 8052-8056.
18. Hanrath, T.; Korgel, B. A., Chemical Surface Passivation of Ge Nanowires. J. Am. Chem. Soc. 2004, 126 (47), 15466-15472
19. Ikeda, K.; Imai, S.; Matsumura, M., Atomic layer etching of germanium. Appl. Surf. Sci. 1997, 112, 87-91.
20. Choi, K.; Buriak, J. M., Hydrogermylation of alkenes and alkynes on hydride-terminated Ge(100) surfaces. Langmuir 2000, 16, 7737-7741.
21. Buriak, J. M., Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 2002, 102 (5), 1271-1308.
22. Teplyakov, A. V.; Lal, P.; Noah, Y. A.; Bent, S. F., Evidence for a retro-Diels-Alder reaction on a single crystalline surface: Butadienes on Ge(100). J. Am. Chem. Soc. 1998, 120 (29), 7377-7378.
23. Teplyakov, A. V.; Kong, M. J.; Bent, S. F., Vibrational spectroscopic studies of Diels-Alder reactions with the Si(100)-2x1 surface as a dienophile. J. Am. Chem. Soc. 1997, 119 (45), 11100-11101.
24. R. B. Jackman, H. Ebert and J. S. Foord, Reaction mechanisms for the photon-enhanced etching of semiconductors: An investigation of the UV-stimulated interaction of chlorine with Si(100). Surf. Sci, 1986, 176, 183.
25. Hsieh M.F. ,Cheng J.Y.,Yang J.C., Lin D.S., Determination of dissociative fragment-adsorbate interaction energy during chemisorption of the diatomic molecule HCl on Si(100). Phys. Rev. B, 2010, 81, 045324.
26. I. Lyubinetsky and Z. Dohna´lek, W. J. Choyke, J. T. Yates, Jr., Cl2 dissociation on Si(100)-(2x1): A statistical study by scanning tunneling microscopy. Phys. Rev. B, 1998, 58, 7950-7957.
27. Q. Gao, C.C. Cheng, P.J Chen, W.J. Choyke, J.T. Yates, Jr., Comparison of C12 and HC1 adsorption on Si(100)-(2 x 1). Thin Solid Films, 1993, 225, 140-144.
28. Y Bogumilowicz, J M Hartmann1, R Truche, Y Campidelli,G Rolland and T Billon, Chemical vapour etching of Si, SiGe and Ge with HCl; applications to the formation of thin relaxed SiGe buffers and to the revelation of threading dislocations. Semicond. Sci. Technol. 2005, 20, 127–134.
29. Bodlaki, D.; Yamamoto, H.; Waldeck, D. H.; Borguet, E., Ambient stability of chemically passivated germanium interfaces. Surf. Sci. 2003, 543 (1-3), 63-74.
30. Tobias Hanrath and Brian A. Korgel, Alkane and Alkanethiol Passivation of Halogenated Ge Nanowires. J. Am. Chem. Soc. 2004, 126, 15466-15472.
31. Jae Young Choe and Irving P. Herman, Vincent M. Donnelly, Laser-induced thermal desorption analysis of the surface during Ge etching in a Cl2 inductively coupled plasma. J. Vac. Sci. Technol. A, 1998, 16(6), 3266-3273.
32. Mark P. D’Evelyn, Yuemei L. Yang, and Stephen M. Cohen, Adsorption, desorption, and decomposition of HCl and HBr on Ge(100): Competitive pairing and nearfirstorder desorption kinetics. J. Chem. Phys. 1994, 101(3), 2463-2475.
33. Wu J.L.; Pan S.Y.; Lin D.S., Stability and mechanism of selective etching of ultrathin Ge films on the Si(100) surface upon chlorine adsorption. Phys. Rev. B, 2004, 69, 045308.
34. Ikeda, K.; Imai, S.; Matsumura, M., Atomic layer etching of germanium. Appl. Surf. Sci. 1997, 112, 87-91.
35. Loscutoff, P. L.; Bent, S. F., Reactivity of the germanium surface: Chemical passivation and functionalization. Annu. Rev. Phys. Chem. 2006, 57, 467-495.
36. http://www.germantech.com.cn/new/cplook.asp?id=230
37. http://www.nsrrc.org.tw/chinese/img/pdf/info.pdf.
38. Campagna, M.; Rosei, R., Photoemission and adsorption spectroscopy of solid and interfaces with synchrotron radiation, North-Holland. 1990.
39. Hahn, E., Methods of calculating the properties of electron lenses. Adv. Electron. El. Phys. 1989, 75, 233-328.
40. (a) Gasser, R. P. H., An Introduction to chemisorption and catalysis by metal. Oxford University Press 1985; (b) An Introduction to Surface Chemistry , http://www.chem.qmw.ac.uk/surfaces/scc/.
41. A.H Boonstra,J. Van Ruler, The adsorption of various gases on clean and oxidized Ge surfaces. Surf. Sci. 1966, 4 , 141-149.
42. Loscutoff, P. L.; Bent, S. F., Reactivity of the germanium surface: Chemical passivation and functionalization. Annu. Rev. Phys. Chem. 2006, 57, 467-495.
43. R. D. Schnell, F. J. Himpsel, A. Bogen, D. Rieger, and W. Steinmann, Surface core-level shifts for clean and halogen-covered Ge(100) and Ge(111). Phys. Rev. B. 1985, 32, 8052–8056.
44. Mark P. D’Evelyn, Yuemei L. Yang, and Stephen M. Cohen, Adsorption, desorption, and decomposition of HCl and HBr on Ge(100): Competitive pairing and nearfirstorder desorption kinetics. J. Chem. Phys. 1994, 101(3), 2463-2475.
45. http://wenku.baidu.com/view/622d681c227916888486d7fc
46. Jae Young Choe and Irving P. Herman, Vincent M. Donnelly, Laser-induced thermal desorption analysis of the surface during Ge etching in a Cl2 inductively coupled plasma. J. Vac. Sci. Technol. A, 1998, 16(6), 3266-3273.
47. Ikeda, K.; Imai, S.; Matsumura, M., Atomic layer etching of germanium. Appl. Surf. Sci. 1997, 112, 87-91.
48. G. A. de Wijs, A. De Vita, A. Selloni, First-principles study of chlorine adsorption and reactions on Si(100). Phys. Rev. B. 1998,57,10021-10029.
49. Chan S.P.; Liu Z.F.,Lau W.M., Tse J.S., SiCl4 desorption in chlorine etching of Si(100)-a first principles study. Surf. Sci. 1999, 432, 125-138.
50. Lin D.S.; Pan S.H. ;Wu M.W., Chlorine-induced Si surface segregation on the Ge-terminated Si/Ge(100)surface from core-level photoemission. Phys. Rev. B.2001,64.2333302.
51. Q. Gao, C. C. Cheng, P. J. Chen, W. J. Choyke, and J. T. Yates, Chlorine bonding sites and bonding configurations on Si(100)-(2×1). J. Chem. Phys. 1993, 98(10), 8308-8323.
52. Pendar Ardalan, Charles B. Musgrave,Stacey F. Bent, Formation of Alkanethiolate Self-Assembled Monolayers at Halide-Terminated Ge Surfaces. Langmuir. 2009, 25, 2013-2025.
53. Pendar Ardalan, Yun Sun, Piero Pianetta, Charles B. Musgrave,Stacey F. Bent, Reaction Mechanism, Bonding, and Thermal Stability of 1-Alkanethiols Self-Assembled on Halogenated Ge Surfeces. Langmuir. 2010, 26(11), 8419–8429.
54. Jungyup Kim,Jim Mc Vittie,Krishna Saraswat,Yoshio Nishi,Germanium Surface Clening with Hydrochloric Acid. ECS Transactions.2006,3,1191-1196.
55. Peter Roediger, Heinz D. Wanzenboeck,Gottfried Hochleitner, and Emmerich Bertagnolli, Crystallinity-retaining removal of germanium by direct-write focused electron beam induced etching. J. Vac. Sci. Technol. B. 2011,29(4),041801.