研究生: |
林純安 |
---|---|
論文名稱: |
高密度魔晶球在剪力影響下之流動 Flow of Concentrated Hydrogel Spheres Under Shear |
指導教授: |
黃仲仁
Huang, Jung-Ren 蔡日強 Tsai, Jih-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 顆粒流 、顆粒體 |
英文關鍵詞: | Granular flow, Granular material |
DOI URL: | https://doi.org/10.6345/NTNU202205229 |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用影像分析有彈性的光滑軟顆粒材料(魔晶球)在三維空間中的運動。在雙錐形邊界條件之下,上板以穩定角速度轉動,下板則靜止不動,使魔晶球被一穩定的剪力驅動。在此系統條件底下魔晶球表現出過滲透的行為,並且均方位移曲線(MSD)表現出類週期性的震盪行為,其第一周期曲線增長與魔晶球在水缸內的高度有關。隨著魔晶球所在位置垂直高度的增加,MSD曲線增長至第一高峰值的速率也越快,並且魔晶球的運動行為由角度方向(φ)分量主導。在受穩定剪力影響下的魔晶球運動與同狀況下的牛頓流體之運動行為差異很大,但也不是無序且隨機的布朗運動行為。
We study the three-dimensional motion of a kind of elastic and soft particles with smooth surface, hydrogel spheres, by video imaging. The spheres are subjected to steady shear with the setup of double-cone geometry. In our system, the upper cone is driven by a motor and has constant angular velocity while the lower cone is fixed. The spheres exhibit super diffusion behavior, and the mean square displacement (MSD) shows quasi-periodic behavior with height-dependent periods. The MSD curve increases faster when the height increases before it climbs up to the first peak. The motion of the hydrogel spheres is dominated by the motion in φ direction. In our system the motion of the hydrogel spheres is much different from that of the Newtonian fluid under steady shear and also different from the Brownian motion.
[1] 賈魯強;黎璧賢 (2001). "漫談顆粒體物理, "物理雙月刊(廿三卷四期),504-510.
[2] Tsai, J. C. and J. P. Gollub (2004). "Slowly sheared dense granular flows: Crystallization and nonunique final states." Physical Review E 70(3). 031303.
[3] Tsai, J. C., Voth G. A. and Gollub J.P. (2003). "Internal granular dynamics, shear-induced crystallization, and compaction steps." Physical Review Letters 91(6). 064301.
[4] Fernandez-Nieves, A., van Duijneveldt, J. S., Fernandez-Barbero, A., Vincent, B. and de las Nieves, F. J. (2001). "Structure formation from mesoscopic soft particles." Physical Review E 64(5). 051603.
[5] Besseling, R., Eric R. Weeks, A. B. Schofield and W. C. K. Poon (2007). "Three-dimensional imaging of colloidal glasses under steady shear." Physical Review Letters 99(2). 028301.
[6] 王子瑜;曹恒光, (2005). "布朗運動、郎之萬方程式、與布朗動力學, "物理雙月刊(廿七卷三期),456-460.
[7] Michalet, X. (2010). "Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium." Physical Review E 82(4). 041914.
[8] Grebenkov, D. S. (2011). "Probability distribution of the time-averaged mean-square displacement of a Gaussian process." Physical Review E 84(3). 031124.
[9] Li, T. C. and M. G. Raizen (2013). "Brownian motion at short time scales." Annalen Der Physik 525(4): 281-295.
[10] Toyoichi Tanaka, (1978). "Collapse of Gels and the Critical Endpoint" Physical Review Letter 40, 820
[11] Matsuo, E. S. and T. Tanaka (1988). "Kinetics of Discontinuous Volume Phase-Transition of Gels." Journal of Chemical Physics 89(3): 1695-1703.
[12] P. T. Van Emmerik and C. A. Smolders (1973). "Phase Separation of Polymer-Solutions - Calculation of Cloudpoint Curve with a Concentration and Temperature-Dependent Free-Energy Correction Parameter." European Polymer Journal 9(2): 157-167.
[13] Onuki, A. (1988). "Pattern-Formation in Gels." Journal of the Physical Society of Japan 57(3): 703-706.
[14] Onuki, A. (1988). "Phase-Transition in Deformed Gels." Journal of the Physical Society of Japan 57(3): 699-702.
[15] Doi, M. (2009). "Gel Dynamics." Journal of the Physical Society of Japan 78(5). 052001.
[16] Tanaka T., S. T. Sun, Hirokawa Y., Katayama S., John Kucera, Hirose Y. (1987). "Mechanical Instability of Gels at the Phase-Transition." Nature 325(6107): 796-798.
[17] Tanaka, T. (1986). "Kinetics of Phase-Transition in Polymer Gels." Physica A 140(1-2): 261-268.
[18] Richard A.L.Jone, (2002) "Soft Condensed Matter. " Oxford University Press.
[19] Stephen J. Blundell and Katherine M.Blundell, (2010) "Thermal Physics. " Oxford University Press.
[20] Cui, S. T. (2005). "Molecular self-diffusion in nanoscale cylindrical pores and classical Fick's law predictions." Journal of Chemical Physics 123(5): 054706.