研究生: |
闕廷宇 Chueh, Ting-Yu |
---|---|
論文名稱: |
單次性不同認知要求運動對於抑制控制之影響:事件關聯電位及隨機交叉試驗研究 Comparison of the effects of acute exercise with different cognitive demands on inhibitory control: an event-related potential and randomized crossover trial study |
指導教授: |
洪聰敏
Hung, Tsung-Min |
口試委員: |
阮啟弘
Juan, Chi-Hung 黃崇儒 Huang, Chung-Ju 張育愷 Chang, Yu-Kai 洪巧菱 Hung, Chiao-Ling 洪聰敏 Hung, Tsung-Min |
口試日期: | 2022/01/21 |
學位類別: |
博士 Doctor |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 執行功能 、認知控制 、急性運動 、腦電圖 |
英文關鍵詞: | executive functions, cognitive control, acute exercise, EEG |
研究方法: | 實驗設計法 、 敘事分析 |
DOI URL: | http://doi.org/10.6345/NTNU202300395 |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:36 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討單次性不同認知要求運動對於抑制控制之行為及其電生理表現之 影響。本研究為組內交叉設計,30 名男性參與者 (平均年齡為 22.4 ± 2 歲) 參與三個不 同情境,分別是 20 分鐘高認知要求運動、低認知要求運動及動態控制情境,情境的順 序則由隨機方式產生。在每次介入前後都會測量旁側干擾作業並同時紀錄腦波及分析作 業刺激之後的 N2 及 P3 波來瞭解單次性不同認知要求運動對於抑制控制之行為表現及 其神經電生理機制。在行為結果方面,不論認知作業情境,參與者在進行兩種運動情境 後都相對於動態控制情境有較短的反應時間且受到作業情境所產生的干擾 (flanker effect 反應時間) 也較小,表示參與者在運動後都有較佳的抑制控制行為表現,並分別 呈現大 (效果量介於–0.934 至–1.07) 及中等的效果 (效果量介於–0.502至–0.507)。 在電生理結果方面,在一致情境下,參與者在進行兩種運動情境後都相對於主動控制情 境都有較短的 N2 潛時;不分作業情境,則有較短的 P3 潛時,顯示參與者在運動後能促 進刺激辨識的速度,其效果量為中等 (效果量介於 –0.507 至 –0.777)。值得注意的是, 只有高認知要求運動情境相較於主動控制情境,參與者有較短的 N2 differecne 潛時,其 效果量為中等 (−0.528),而三個情境與 N2 differecne 潛時的效果呈現顯著線性關係,說 明高認知要求運動情境能更有效的處理抑制控制歷程。整體而言,本研究發現從事單次 性高低認知要求運動皆有助於抑制控制之行為及電生理表現,認知要求較高的運動則與 較有效率的抑制控制神經運作有關。
The aim of this study was to examine the effects of cognitive demand during acute exercise on the behavioral and electrophysiological correlates of inhibitory control. In a within- participants design, 30 male participants (mean age = 22.4 ± 2 years) performed 20-min sessions of high cognitive-demand exercise (HE), low cognitive-demand exercise (LE), and an active control (AC) on separate days in a randomized order. A modified flanker task was administered to assess inhibitory control before and after the interventions, and electroencephalography was used to derive stimulus-elicited N2 and P3 components. Behavioral data showed that the participants performed significantly shorter reaction time (RT), regardless of congruency and a reduced RT flanker effect following HE and LE compared with the AC condition with large and medium effect sizes, respectively. Electrophysiological data revealed that compared with the AC condition, acute HE and LE had facilitative effects on stimuli evaluation, as indicated by significantly shorter N2 latency for congruent trials and P3 latency regardless of congruency with medium effect sizes. Compared with the AC condition, only acute HE elicited more efficient neural processes in conditions requiring high inhibitory control demand, as indicated by shorter N2 difference latency, with a medium effect size. Overall, the findings suggest that acute HE and LE facilitate inhibitory control and the electrophysiological substrates of target evaluation. Acute exercise with higher cognitive demand may be associated with more refined neural processing for tasks demanding greater amounts of inhibitory control.
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17-42.
Aly, M., & Kojima, H. (2020). Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: A randomized controlled ERP study. Mental Health and Physical Activity, 19, 100363.
American College of Sports Medicine (2018). ACSM's guidelines for exercise testing and prescription (10th ed.). New York: Lippincott Williams & Wilkins.
Anderson, M. C., & Levy, B. J. (2009). Suppressing unwanted memories. Current Directions in Psychological Science, 18(4), 189-194.
Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N., Westen, S. C., Merz, M. E., Pence, B. D., Woods, J. A., & Kramer, A. F. (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. American journal of preventive medicine, 42(2), 109-119.
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.
Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science, 234(4777), 734-737.
Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14(7), 4467-4480.
Bailey, B. W., Muir, A. M., Bartholomew, C. L., Christensen, W. F., Carbine, K. A., Marsh, H., LaCouture, H., McCutcheon, C., & Larson, M. J. (2021). The impact of exercise intensity on neurophysiological indices of food-related inhibitory control and cognitive control: A randomized crossover event-related potential (ERP) study. Neuroimage, 237, 118162.
Baillet, S., Mosher, J. C., & Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal processing magazine, 18(6), 14-30.
Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in psychology, 8, 456.
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in neurobiology, 108, 44-79.
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. San Antonio, TX: Psychological Corporation, 1, 82.
Bedard, C., Bremer, E., Graham, J. D., Chirico, D., & Cairney, J. (2021). Examining the Effects of Acute Cognitively Engaging Physical Activity on Cognition in Children. Frontiers in psychology, 12, 1775.
Behrens, M., Mau-Moeller, A., Lischke, A., Katlun, F., Gube, M., Zschorlich, V., Skripitz, R., & Weippert, M. (2018). Mental fatigue increases gait variability during dual-task walking in old adults. The Journals of Gerontology: Series A, 73(6), 792-797.
Benzing, V., Chang, Y.-K., & Schmidt, M. (2018). Acute physical activity enhances executive functions in children with ADHD. Scientific reports, 8(1), 1-10.
Benzing, V., Heinks, T., Eggenberger, N., & Schmidt, M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PLoS One, 11(12), e0167501.
Berridge, C. W., & Spencer, R. C. (2016). Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Research, 1641, 189-196.
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental review, 30(4), 331-351.
Best, J. R. (2012). Exergaming immediately enhances children's executive function. Developmental Psychology, 48(5), 1501.
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child development, 81(6), 1641-1660.
Borgmann, K. W., Risko, E. F., Stolz, J. A., & Besner, D. (2007). Simon says: Reliability and the role of working memory and attentional control in the Simon task. Psychonomic Bulletin & Review, 14(2), 313-319.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539-546.
Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose–response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology, 38(4), 396-408.
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219-223.
Burgoyne, A. P., & Engle, R. W. (2020). Attention control: A cornerstone of higher-order cognition. Current Directions in Psychological Science, 29(6), 624-630.
Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research, 28(2), 193-213.
Chang, Y., Labban, J., Gapin, J., & Etnier, J. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101.
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300.
Chang, Y. K., Chu, C. H., Wang, C. C., Song, T. F., & Wei, G. X. (2015). Effect of acute exercise and cardiovascular fitness on cognitive function: An event‐related cortical desynchronization study. Psychophysiology, 52(3), 342-351.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101.
Chueh, T.-Y., Hsieh, S.-S., Tsai, Y.-J., Yu, C.-L., Hung, C.-L., Benzing, V., Schmidt, M., Chang, Y.-K., Hillman, C. H., & Hung, T.-M. (2022). Effects of a single bout of moderate-to-vigorous physical activity on executive functions in children with attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Psychology of Sport and Exercise, 102097.
Clawson, A., Clayson, P. E., Keith, C. M., Catron, C., & Larson, M. J. (2017). Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis. Biological Psychology, 124, 87-99.
Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49(7), 1953-1961.
Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol, 10(3), e1001293.
Craft, J. L., & Simon, J. R. (1970). Processing symbolic information from a visual display: interference from an irrelevant directional cue. Journal of experimental psychology, 83(3p1), 415.
Cragg, L., & Nation, K. (2008). Go or no‐go? Developmental improvements in the efficiency of response inhibition in mid‐childhood. Developmental Science, 11(6), 819-827.
Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neuroscience & Biobehavioral Reviews, 37(1), 11-23.
de Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. Journal of Science and Medicine in Sport, 21(5), 501-507.
de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Australian Journal of Physiotherapy, 55(2), 129-133.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.
Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., Albouy, G., Salmon, E., Peters, F., & Schmidt, C. (2009). Abnormal neural filtering of irrelevant visual information in depression. Journal of Neuroscience, 29(5), 1395-1403.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child development, 71(1), 44-56.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
Dimigen, O. (2020). Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage, 207, 116117.
Donchin, E. (1981). Surprise!… surprise? Psychophysiology, 18(5), 493-513.
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64.
Dwan, K., Li, T., Altman, D. G., & Elbourne, D. (2019). CONSORT 2010 statement: extension to randomised crossover trials. Bmj, 366, l4378.
Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children's executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178-186.
Ekkekakis, P., & Petruzzello, S. J. (2002). Analysis of the affect measurement conundrum in exercise psychology: IV. A conceptual case for the affect circumplex. Psychology of Sport and Exercise, 3(1), 35-63.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, & Psychophysics, 16(1), 143-149.
Fabiani, M., Gratton, G., & Coles, M. (2000). Event-related brain potentials: Methods, theory. Handbook of psychophysiology, 53-84.
Flynn, R. M., & Richert, R. A. (2018). Cognitive, not physical, engagement in video gaming influences executive functioning. Journal of Cognition and Development, 19(1), 1-20.
Foley, N. C., Bhogal, S. K., Teasell, R. W., Bureau, Y., & Speechley, M. R. (2006). Estimates of quality and reliability with the physiotherapy evidence-based database scale to assess the methodology of randomized controlled trials of pharmacological and nonpharmacological interventions. Physical therapy, 86(6), 817-824.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170.
Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, inc. accelerometer. Medicine and science in sports and exercise, 30(5), 777-781.
Gajewski, P. D., Stoerig, P., & Falkenstein, M. (2008). ERP—correlates of response selection in a response conflict paradigm. Brain Research, 1189, 127-134.
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., Nieman, D. C., & Swain, D. P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334-1359.
Gonsalvez, C. J., Barry, R. J., Rushby, J. A., & Polich, J. (2007). Target‐to‐target interval, intensity, and P300 from an auditory single‐stimulus task. Psychophysiology, 44(2), 245-250.
Green, C. S., Strobach, T., & Schubert, T. (2014). On methodological standards in training and transfer experiments. Psychological Research, 78(6), 756-772.
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14-23.
Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. (2010). Ego depletion and the strength model of self-control: a meta-analysis. Psychological Bulletin, 136(4), 495.
Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: the measurement of affect during exercise. Journal of sport and exercise psychology, 11(3), 304-317.
Hasbroucq, T., & Guiard, Y. (1992). The effects of intensity and irrelevant location of a tactile stimulation in a choice reaction time task. Neuropsychologia, 30(1), 91-94.
Heemskerk, C. H., Lubans, D., Strand, S., & Malmberg, L.-E. (2020). The effect of physical education lesson intensity and cognitive demand on subsequent learning behaviour. Journal of Science and Medicine in Sport, 23(6), 586-590.
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287(5456), 1269-1272.
Herold, F., Hamacher, D., Schega, L., & Müller, N. G. (2018). Thinking while moving or moving while thinking–concepts of motor-cognitive training for cognitive performance enhancement. Frontiers in Aging Neuroscience, 10, 228.
Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions (2 nd ed.). John Wiley & Sons.
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054.
Hirt, E. R., Devers, E. E., & McCrea, S. M. (2008). I want to be creative: exploring the role of hedonic contingency theory in the positive mood-cognitive flexibility link. Journal of personality and social psychology, 94(2), 214.
Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189-202.
Hong, X., Yang, F., Wang, J., Li, C., Ding, M., & Sheng, J. (2021). Conflict Processing in Schizophrenia: Dissociable neural mechanisms revealed by the N2 and frontal midline theta. Neuropsychologia, 155, 107791.
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 2243-2257.
Hsieh, S.-S., Chueh, T.-Y., Huang, C.-J., Kao, S.-C., Hillman, C. H., Chang, Y.-K., & Hung, T.-M. (2020). Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. Journal of Sports Sciences, 1-13.
Hsieh, S.-S., Huang, C.-J., Wu, C.-T., Chang, Y.-K., & Hung, T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. Journal of clinical medicine, 7(11), 391.
Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience & Biobehavioral Reviews.
Ishihara, T., Sugasawa, S., Matsuda, Y., & Mizuno, M. (2017). The beneficial effects of game-based exercise using age-appropriate tennis lessons on the executive functions of 6–12-year-old children. Neuroscience Letters, 642, 97-101.
Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2015). The effects of qualitatively different acute physical activity interventions in real-world settings on executive functions in preadolescent children. Mental Health and Physical Activity, 9, 1-9.
Ji, Z., Feng, T., Mei, L., Li, A., & Zhang, C. (2019). Influence of acute combined physical and cognitive exercise on cognitive function: an NIRS study. PeerJ, 7, e7418.
Johnson, M. N., Maher, J. P., Meadows, C. C., Bittel, K. M., Hevel, D. J., & Drollette, E. S. (2022). Positive affect moderates inhibitory control and positive affect following a single bout of self-select aerobic exercise. Psychology of Sport and Exercise, 60, 102141.
Johnson, R. (1993). On the neural generators of the P300 component of the event-related potential. Psychophysiology, 30, 90-97.
Kamijo, K., & Abe, R. (2019). Aftereffects of cognitively demanding acute aerobic exercise on working memory. Medicine and Science in Sports and Exercise, 51(1), 153.
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., & Kuroiwa, K. (2004). Differential influences of exercise intensity on information processing in the central nervous system. European Journal of Applied Physiology, 92(3), 305-311.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121.
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47.
Kao, S.-C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S. C., Cadenas‐Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425.
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high‐intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345.
Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., Luu, P., Miller, G. A., & Yee, C. M. (2014). Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1-21.
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.
Ladouceur, C. D., Dahl, R. E., & Carter, C. S. (2007). Development of action monitoring through adolescence into adulthood: ERP and source localization. Developmental Science, 10(6), 874-891.
Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297.
Lemire-Rodger, S., Lam, J., Viviano, J. D., Stevens, W. D., Spreng, R. N., & Turner, G. R. (2019). Inhibit, switch, and update: A within-subject fMRI investigation of executive control. Neuropsychologia, 132, 107134.
Leroy, S. (2009). Why is it so hard to do my work? The challenge of attention residue when switching between work tasks. Organizational Behavior and Human Decision Processes, 109(2), 168-181.
Leuthold, H., & Schröter, H. (2006). Electrophysiological evidence for response priming and conflict regulation in the auditory Simon task. Brain Research, 1097(1), 167-180.
Ligeza, T. S., Maciejczyk, M., Kałamała, P., Szygula, Z., & Wyczesany, M. (2018). Moderate-intensity exercise boosts the N2 neural inhibition marker: A randomized and counterbalanced ERP study with precisely controlled exercise intensity. Biological Psychology, 135, 170-179.
Lin, T.-Y., Hsieh, S.-S., Chueh, T.-Y., Huang, C.-J., & Hung, T.-M. (2021). The effects of barbell resistance exercise on information processing speed and conflict-related ERP in older adults: a crossover randomized controlled trial. Scientific reports, 11(1), 1-14.
Liou, Y. M., Jwo, C. J., Yao, K. G., Chiang, L.-C., & Huang, L.-H. (2008). Selection of appropriate Chinese terms to represent intensity and types of physical activity terms for use in the Taiwan version of IPAQ. Journal of Nursing Research, 16(4), 252-263.
Liu, T., Xiao, T., Shi, J., Zhao, D., & Liu, J. (2011). Conflict control of children with different intellectual levels: an ERP study. Neuroscience Letters, 490(2), 101-106.
Loewy, A., Wallach, J., & McKellar, S. (1981). Efferent connections of the ventral medulla oblongata in the rat. Brain Research Reviews, 3(1), 63-80.
Loughlin, S., Foote, S., & Grzanna, R. (1986). Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience, 18(2), 307-319.
Luck, S. J. (2014). An introduction to the event‐related potential technique (2nd ed.). Cambridge, MA: MIT Press.
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157.
Ludyga, S., Brand, S., Gerber, M., Weber, P., Brotzmann, M., Habibifar, F., & Pühse, U. (2017). An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Developmental Cognitive Neuroscience, 28, 21-28.
Ludyga, S., Gerber, M., Brand, S., Holsboer‐Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology, 53(11), 1611-1626.
Ludyga, S., Gerber, M., Brand, S., Pühse, U., & Colledge, F. (2018). Effects of aerobic exercise on cognitive performance among young adults in a higher education setting. Research Quarterly for Exercise and Sport, 89(2), 164-172.
Lunt, L., Bramham, J., Morris, R. G., Bullock, P. R., Selway, R. P., Xenitidis, K., & David, A. S. (2012). Prefrontal cortex dysfunction and ‘Jumping to Conclusions’: Bias or deficit? Journal of Neuropsychology, 6(1), 65-78.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109(2), 163.
Marshall, S. J., Levy, S. S., Tudor-Locke, C. E., Kolkhorst, F. W., Wooten, K. M., Ji, M., Macera, C. A., & Ainsworth, B. E. (2009). Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 minutes. American journal of preventive medicine, 36(5), 410-415.
Mavilidi, M. F., Ruiter, M., Schmidt, M., Okely, A. D., Loyens, S., Chandler, P., & Paas, F. (2018). A narrative review of school-based physical activity for enhancing cognition and learning: The importance of relevancy and integration. Frontiers in psychology, 2079.
McGowan, A. L., Chandler, M. C., Brascamp, J. W., & Pontifex, M. B. (2019). Pupillometric indices of locus-coeruleus activation are not modulated following single bouts of exercise. International Journal of Psychophysiology, 140, 41-52.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202.
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100.
Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gøtzsche, P. C., Devereaux, P., Elbourne, D., Egger, M., & Altman, D. G. (2012). CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. International journal of surgery, 10(1), 28-55.
Moore, R., & Bloom, F. (1979). Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annual Review of Neuroscience, 2(1), 113-168.
Moreau, D., & Chou, E. (2019). The acute effect of high-intensity exercise on executive function: a meta-analysis. Perspectives on Psychological Science, 14(5), 734-764.
Moriarty, T. A., Mermier, C., Kravitz, L., Gibson, A., Beltz, N., & Zuhl, M. (2019). Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Frontiers in psychology, 10, 2790.
Mückschel, M., Chmielewski, W., Ziemssen, T., & Beste, C. (2017). The norepinephrine system shows information-content specific properties during cognitive control–Evidence from EEG and pupillary responses. Neuroimage, 149, 44-52.
Nachev, P., Wydell, H., O’neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. Neuroimage, 36, T155-T163.
Nelwamondo, F. V., Mohamed, S., & Marwala, T. (2007). Missing data: A comparison of neural network and expectation maximization techniques. Current Science, 1514-1521.
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus--norepinephrine system. Psychological Bulletin, 131(4), 510.
Nieuwenhuis, S., De Geus, E. J., & Aston‐Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162-175.
Nieuwenhuis, S., Yeung, N., Van Den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26.
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220.
Nigg, J. T. (2017). Annual Research Review: On the relations among self‐regulation, self‐control, executive functioning, effortful control, cognitive control, impulsivity, risk‐taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58(4), 361-383.
Nuwer, M. R., Lehmann, D., da Silva, F. L., Matsuoka, S., Sutherling, W., & Vibert, J. (1999). IFCN guidelines for topographic and frequency analysis of EEGs and EPs. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52, 15-20.
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and moderators of acute aerobic exercise on subsequent interference control: a systematic review and meta-analysis Running title: Acute exercise and interference control. Frontiers in psychology, 10, 2616.
O’Leary, K. C., Pontifex, M. B., Scudder, M. R., Brown, M. L., & Hillman, C. H. (2011). The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology, 122(8), 1518-1525.
Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23(3), 186-189.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paschen, L., Lehmann, T., Kehne, M., & Baumeister, J. (2019). Effects of acute physical exercise with low and high cognitive demands on executive functions in children: A systematic review. Pediatric Exercise Science, 31(3), 267-281.
Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116(2), 220.
Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport and Exercise Psychology, 34(6), 766-786.
Pesce, C., Crova, C., Cereatti, L., Casella, R., & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2(1), 16-22.
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181-197.
Polich, J. (1990). P300, probability, and interstimulus interval. Psychophysiology, 27(4), 396-403.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22.
Pontifex, M. B., Miskovic, V., & Laszlo, S. (2017). Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology, 54(5), 780-791.
Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. The Journal of Pediatrics, 162(3), 543-551.
Postle, B. R., Brush, L. N., & Nick, A. M. (2004). Prefrontal cortex and the mediation of proactive interference in working memory. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 600-608.
Rainer, G., & Miller, E. K. (2000). Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron, 27(1), 179-189.
Robertson, R. J., GOSS, F. L., RUTKOWSKI, J., LENZ, B., DIXON, C., TIMMER, J., FRAZEE, K., DUBE, J., & ANDREACCI, J. (2003). Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Medicine & Science in Sports & Exercise, 35(2), 333-341.
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141.
Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2007). The missing link between action and cognition. Progress in neurobiology, 82(2), 95-107.
Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5, 8.
Shulman, G. L., Tansy, A. P., Kincade, M., Petersen, S. E., McAvoy, M. P., & Corbetta, M. (2002). Reactivation of networks involved in preparatory states. Cerebral Cortex, 12(6), 590-600.
Simon, J. R., & Small Jr, A. (1969). Processing auditory information: interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433.
Staiano, A. E., Abraham, A. A., & Calvert, S. L. (2012). Competitive versus cooperative exergame play for African American adolescents' executive function skills: short-term effects in a long-term training intervention. Developmental Psychology, 48(2), 337.
Stoykov, M. E., Corcos, D. M., & Madhavan, S. (2017). Movement-based priming: clinical applications and neural mechanisms. Journal of Motor Behavior, 49(1), 88-97.
Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., & Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114-124.
Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance: a multimethod validation of reversal theory constructs. Journal of personality and social psychology, 48(1), 107.
Tanji, J., & Shima, K. (1996). Supplementary motor cortex in organization of movement. European neurology, 36(Suppl. 1), 13-19.
Tomporowski, P. D., McCullick, B., Pendleton, D. M., & Pesce, C. (2015). Exercise and children's cognition: the role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 47-55.
Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F., & Taylor, W. C. (2000). Using objective physical activity measures with youth: how many days of monitoring are needed? Medicine & Science in Sports & Exercise, 32(2), 426.
Tsai, P.-S., Wang, S.-Y., Wang, M.-Y., Su, C.-T., Yang, T.-T., Huang, C.-J., & Fang, S.-C. (2005). Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Quality of Life Research, 14(8), 1943-1952.
Usami, K., Matsumoto, R., Kunieda, T., Shimotake, A., Matsuhashi, M., Miyamoto, S., Fukuyama, H., Takahashi, R., & Ikeda, A. (2013). Pre-SMA actively engages in conflict processing in human: a combined study of epicortical ERPs and direct cortical stimulation. Neuropsychologia, 51(5), 1011-1017.
van Bockstaele, E. J., Aston‐Jones, G., Pieribone, V. A., Ennis, M., & Shipley, M. T. (1991). Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. Journal of Comparative Neurology, 309(3), 305-327.
Van Bockstaele, E. J., Pieribone, V. A., & Aston‐Jones, G. (1989). Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. Journal of Comparative Neurology, 290(4), 561-584.
Vanderhasselt, M.-A., De Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychonomic Bulletin & Review, 16(3), 609-612.
Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649.
Verburgh, L., Königs, M., Scherder, E. J., & Oosterlaan, J. (2013). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British Journal of Sports Medicine, 48(12), 973-979.
Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19(3), 165-181.
Viola, F. C., Debener, S., Thorne, J., & Schneider, T. R. (2010). Using ICA for the analysis of multi-channel EEG data. Simultaneous EEG and fMRI: Recording, Analysis, and Application: Recording, Analysis, and Application, 121-133.
Ward, N., Paul, E., Watson, P., Cooke, G., Hillman, C., Cohen, N. J., Kramer, A. F., & Barbey, A. K. (2017). Enhanced learning through multimodal training: evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention. Scientific reports, 7(1), 1-8.
Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: a psychophysiological analysis of the reciprocity of information-processing resources. Science, 221(4615), 1080-1082.
Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8(2), 227-233.
Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute effects of resistance exercise on cognitive function in healthy adults: a systematic review with multilevel meta-analysis. Sports Medicine, 49(6), 905-916.
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482.
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological review, 111(4), 931.
Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring: Predictable dissociations between the error-related negativity and N2. Psychological Science, 17(2), 164-171.
Yogev‐Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement disorders, 23(3), 329-342.
Yu, C.-L., Hsieh, S.-S., Chueh, T.-Y., Huang, C.-J., Hillman, C. H., & Hung, T.-M. (2020). The effects of acute aerobic exercise on inhibitory control and resting state heart rate variability in children with ADHD. Scientific reports, 10(1), 1-15.