研究生: |
林彥廷 Lin, Yen-Ting |
---|---|
論文名稱: |
InP/ZnS核殼量子點應用-無重金屬發光二極體與藉由銀奈米立方體的螢光增強 Development of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal Free Light-Emitting Diodes and Fluorescence Enhancement by Sliver Nanocubes |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 半導體量子點 、磷化銦 /硫化鋅量子點 、無重金屬量子點 |
英文關鍵詞: | Semiconductor quantum dots, InP/ZnS quantum dots, Heavy-metal free quantum dots |
DOI URL: | https://doi.org/10.6345/NTNU202203045 |
論文種類: | 學術論文 |
相關次數: | 點閱:213 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米尺寸半導體量子點的能階隨粒徑大小與組成元素而改變,具有獨特之光學特性。其應用量子點發光二極體(QDs-LEDs)具有高色彩純度、透明度、可延展性且具經濟效益的顯色技術。然而過去量子點主要以鎘(Cd)為主材料,其因為毒性限制了發展。近年來主要的研究為尋找鎘的替代材料,而磷化銦(InP)為主體的量子點因在光電特性上的表現而逐漸嶄露頭角。
本篇論文中,我們為了開發友善環境且低毒性無重金屬的量子點LED,我們使用高溫注射法合成無重金屬之InP/ZnS核殼量子點,並以低成本且安全的前驅物(DMA)3P取代以往危險且昂貴的前驅物,接著在其外層包覆硫化鋅(ZnS),最後形成磷化銦/硫化鋅核殼量子點。再將測試磷化銦/硫化鋅核殼量子點光學特性、結構、熱穩定性後,將其製成量子點LED,最後測試其光電性能。
再者,我們研究藉由銀奈米立方體(Ag nanocube),增強InP/ZnS量子點之螢光。依序利用銀奈米立方體和製備之磷化銦/硫化鋅核殼量子點在玻璃基板上成薄膜,測試其金屬增強螢光(Metal Enhanced Fluorescence, MEF)之效果。初步測試發現確實有螢光增強之效果。
Semiconductor quantum dots (QDs), of which particle sizes are in the nanometer scale, have unique size-controllable optical properties.
Quantum dots light emitting diodes (QDs-LEDs), which is application of QDs, have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency and cost efficiency. For the practical applications, the development of heavy-metal free QDs-LEDs from environment-friendly materials is the most important issue to reduce the impacts of human health and environmental pollution.
In this work, heavy-metal free InP/ZnS core/shell QDs were synthesized by solvothermal method with low-cost, safe and environment-friendly precursors (DMA)3P. The structural and optical characterizations demonstrated the successful syntheses of InP/ZnS core/shell QDs. The maximum fluorescence peak of InP/ZnS core/shell QDs was obtained at ~530 nm. The optimal process conditions were investigated for InP/ZnS core/shell QDs-LEDs fabrication to obtain the best performance. Overall, the multilayered InP/ZnS core/shell QDs-LEDs reveal potential to be the heavy-metal free QDs-LEDs for future display applications.
On the other side, the enhancement of the fluorescence of InP/ZnS quantum dots by silver nanocubes was investigated. We sequentially deposited silver nanocubes and InP/ZnS quantum dots on ITO substrate. After preliminary testing, we found that the fluorescence of InP/ZnS quantum dot is indeed enhanced by silver nanocubes because of Metal-Enhanced Fluorescence theory.
1. 劉吉平, 郝向陽, 羅煥耿, 奈米科學與技術, 2003
2. Gene, A. S., Structural, Optical and Magnetic Characterization of Spinel Zinc Chromite (ZnCr2O4) Nanocrystals Synthesized by Thermal Treatment Method, 2014.
3. Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 17 (6), pp 975-986.
4. 牟中原, 陳家俊, 奈米材料研究發展, 科學發展月刊. 2000, 28(4), pp.281-288.
5. Scholl, J. A.; Garcia-Etxarri, A.; Koh, A. L.; Dionne, J. A., Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013, 13 (2), pp 564-569
6. Arakawa, Y.; Sakaki, H., Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40 (11), pp 939-941.
7. Chen, Chia-Chun.; Herhold, A. B.; Johnson, C. S., Alivisatos, A. P.,, Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science. 1997, 276 (5311), pp 398-401
8. 詹國禎, 砷化銦量子點的光電性質, 物理雙月刊. 2003, 25(3), pp 1-7.
9. Donega, C. D. M.; Liljeroth, P.; Vanmaekelbergh, D., Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small. 2005, 1 (12), pp 1152-1162.
10. LaMer, V. K.; Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, pp 4847-4854.
11. Mehranpoura, H.; Askaria, M.; Ghamsarib, M. S., LaMer theory approach to study the nucleation and growth of sol-gel derived TiO2 nanoparticles. In Proceedings of the 4th International Conference on Nanostructures (ICNS 4), Kish Island, I.R. Iran, 2012; pp 1710-1712.
12. Viswanatha, R.; Sarma, D. D., Nanomaterials Chemistry. 2007.
13. García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H.; Owen, J. S., Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors. Chem. Mater. 2013, 25 (8), pp 1233-1249.
14. Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L., Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal. Chem. 2011, 83 (23), pp 8826-8837.
15. Neouze, M. A.; Schubert, U., Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatsh. Chem. 2008, 139 (3), pp 183-195.
16. Allen, P. M.; Liu, W.; Chauhan, V. P.; Lee, J.; Ting, A. Y.; Fukumura, D.; Jain, R. K.; Bawend, M. G., InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. J. Am. Chem. Soc. 2010, 132, pp 470-471.
17. Wei, S.-H.; Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 1998, 72 (16), 2011-2013.
18. Lim, J.; Bae, W. K.; Kwak, J.; Lee, S.; Lee, C.; Char, K., Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express. 2012, 2 (5), pp 594-628.
19. Norris, D. J.; Efros, A. L.; Erwin, S. C., Doped Nanocrystals. Science. 2008, 319 (5871), pp 1776-1779.
20. Petryayeva, E.; Algar, W. R.; Medintz, I. L., Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013, 67 (3), pp 215-252.
21. Shen, S.; Wang, Q., Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chem. Mater. 2013, 25 (8), pp 1166-1178.
22. Murray, C. B.; Noms, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, pp 8706-8715.
23. Zheng, Y.; Gao, S.; Ying, J. Y., Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots. Adv. Mater. 2007, 19 (3), pp 376-380.
24. Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P., Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133 (41), pp 16422-16424.
25. Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic´, V., Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett. 2009, 9, pp 2532-2536.
26. Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W., Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24 (30), pp 4180-4185.
27. Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S., Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 2009, 105 (7), 073106.
28. 陳學仕, 半導體膠體量子點之未來應用-電激發光元件., 化工科技與商情. 2005, 22, pp 60-66.
29. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V., Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics. 2012, 7 (1), pp 13-23.
30. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature. 2014, 515 (7525), pp 96-99.
31. Zayats, A. V.; Smolyaninov, I. I.; Maradudin., A. A., Nano-optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, pp 131-314.
32. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107, pp 668-677.
33. Aslan, K.; Lakowicz, J. R.; Szmacinski, H.; Geddes, C. D., Metal-Enhanced Fluorescence Solution-Based Sensing Platform. J. Fluoresc. 2004, 14 (6), pp 677–679.
34. Zhang, Y.; Aslan, K.; Previte, M. J. R.; Geddes, C. D., Low Temperature Metal-Enhanced Fluorescence. J. Fluoresc. 2007, 17 (6), pp 627-631.
35. Xie, R.; Battaglia, D.; Peng, X., Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared. J. Am. Chem. Soc. 2007, 129 (50), pp 15432–15433
36. Mikik, I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N., Synthesis and Characterization of InP, Gap, and GaInP2 Quantum Dots. J. Phys. Chem. 1995, 99, pp 7754−7759.
37. Battaglia, D.; Peng, X., Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2002, 2 (9), pp 1027-1030.
38. Gary, D. C.; Glassy, B. A.; Cossairt, B. M., Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors. Chem. Mater. 2014, 26 (4), pp 1734-1744.
39. Li, L.; Protière, M.; Reiss, P., Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor. Chem. Mater. 2008, 20 (8), pp 2261-2623.
40. Lauth, J.; Strupeit, T.; Kornowski, A.; Weller, H., A Transmetalation Route for Colloidal GaAs Nanocrystals and Additional III–V Semiconductor Materials. Chem. Mater. 2013, 25 (8), pp 1377-1383.
41. Ping Yan, Y. X.; Wang, W.; Liu, F.; Qian, Y., A low-temperature route to InP nanocrystals. J. Mater. Chem. 1999, 9, pp 1831-1833.
42. Liu, Z.; Kumbhar, A.; Xu, D.; Zhang, J.; Sun, Z.; Fang, J., Coreduction colloidal synthesis of III-V nanocrystals: the case of InP. Angew. Chem. Int. Ed. 2008, 47 (19), pp 3540-3542.
43. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹-TEM., 小奈米大世界期刊. 2003
44. 羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM., 小奈米大世界期刊. 2003
45. 林麗娟, X光繞射原理及其應用., 工業材料. 1994, 86, pp 100-109.
46. Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z., Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27 (13), pp 4893-4898.
47. Lin, M.-H.; Chen, H.-Y.; Gwo, S., Layer-by-Layer Assembly of Three-Dimensional Colloidal Supercrystals with Tunable Plasmonic Properties. J. Am. Chem. Soc. 2010, 132, pp 11259-11263.
48. Jing, P.; Liu, J. Z. I.; Lv, S.; Kong, X.; Zhao, J.; Masumoto, Y., Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots. J. Phys. Chem. C. 2009, 113, pp 13545-13550.
49. Shi, A.; Wang, X.; Meng, X.; Liu, X.; Li, H.; Zhao, J., Temperature-dependent photoluminescence of CuInS2 quantum dots. J. Lumin. 2012, 132 (7), pp 1819-1823.
50. Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donegá, C. d. M.; Meijerink, A., High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano. 2012, 6 (10), pp 9058-9067.
51. Kim, J. I.; Kim, J.; Lee, J.; Jung, D.-R.; Kim, H.; Choi, H.; Lee, S.; Byun, S.; Kang, S.; Park, B., Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 2012, 7 (428), pp 1-7.