簡易檢索 / 詳目顯示

研究生: 蘇于婷
Su, Yu-Ting
論文名稱: 單次阻力運動後攝取果糖對健康年輕男性尿酸濃度之影響
The Effect of Acute Resistance Exercise on Uric Acid in Healthy Adults Following Fructose Intake
指導教授: 劉宏文
Liu, Hung-Wen
口試委員: 劉宏文
Liu, Hung-Wen
葉宛儒
Yeh, Wan-Ju
蘇玫尹
Su, Mei-Yin
口試日期: 2023/01/13
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 48
中文關鍵詞: 高尿酸血症果糖阻力運動嘌呤代謝
英文關鍵詞: hyperuricemia, fructose, resistance exercise, purine metabolism
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301192
論文種類: 學術論文
相關次數: 點閱:61下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:高尿酸血症是一種嘌呤代謝混亂所引發的疾病。目前全球高尿酸血症盛行率和發生率呈上升的趨勢,其所引發的合併症包括心血管疾病、慢性腎臟病、糖尿病等代謝疾病,已造成全球醫療負擔,使得高尿酸血症逐漸成為全球性的公共衛生問題。同時,近年來越來越多流行病學研究顯示,果糖攝取量增加與高尿酸血症有關,主因是果糖未如葡萄糖代謝具有負回饋調節機制,當攝取大量果糖,將會造成三磷酸腺苷 (Adenosine triphosphate, ATP) 被快速消耗,活化腺苷降解程序生成尿酸,增加罹患高尿酸血症的風險。先前研究發現,當進行高強度的運動時,骨骼肌中的 ATP 也會快速消耗,產生嘌呤相關代謝物進入血液,經肝臟作用產生尿酸。綜合上述可知,果糖與劇烈運動均會造成血液中尿酸濃度上升,但過往針對運動的研究多以高強度間歇或連續有氧運動為主,阻力運動研究較少,故需要更進一步探討阻力運動所帶來的反應。目的:探討單次阻力運動後攝取果糖對尿酸濃度的變化。方法:招募健康年輕實驗參與者 12 名,運動處方為進行 4 項阻力運動動作 (硬舉、臥推、深蹲、划船),強度為 70% 1RM;果糖攝取劑量為給予每公斤體重 0.75 公克的 300 毫升果糖溶液,並以 SPSS 25.0 版使用二因子重複量數變異數分析考驗依變項 (尿酸、乳酸、收縮壓、舒張壓、心率) 在 4 種不同處理 (EF:阻力運動後攝取果糖、EW:阻力運動後攝取水分、CF:靜坐休息後攝取果糖、CW:靜坐休息後攝取水分) 與 8 個時間點 (空腹、運動前、運動後立即、運動半小時、運動後 1 小時、運動後 2 小時、運動後 4 小時、運動後 24 小時) 下是否有顯著差異。顯著水準設定 α = .05。結果:血液尿酸濃度在經過阻力運動後皆會顯著提高,此血液尿酸濃度上升的現象會持續至運動後 24 小時 (EF: 7.02 mg/dL, ↑1.31 mg/dL, 23%; EW: 6.84 mg/dL, ↑1.08 mg/dL, 17%),而單獨攝取果糖後,血液尿酸濃度會在攝取後半小時 (6.24 mg/dL, ↑0.58 mg/dL, 10%) 和 1 小時 (6.08 mg/dL, ↑0.43 mg/dL, 8%) 顯著上升,但當阻力運動結合果糖處理則會在運動後 1 小時 (9.03 mg/dL, ↑3.59 mg/dL, 63%)、2 小時 (9.04 mg/dL, ↑3.33 mg/dL, 58%) 顯著高於其他三種處理。血液乳酸濃度,在進行阻力運動後皆會顯著上升至運動後 1 小時 (p < .05),而攝取果糖後亦會在攝取後 1 小時內顯著提高 (p < .05) ,但阻力運動合併果糖處理的血液乳酸濃度在運動後 1 小時高於單獨進行阻力運動處理 (EF: ↑2.38 mg/dL, 179%; EW: ↑1.65 mg/dL, 149%) 且在運動後 2 小時 (↑1.19 mg/dL, 89%) 仍未回到基準值。此外,心率則與血液乳酸濃度變化趨勢相似,當阻力運動結合果糖攝取後,心率在運動後 4 小時的時間點仍顯著高於其他三種處理 (EF: 74.58 bmp; EW: 67.42 bmp; CF:65.68 bmp; CW: 65.83 bmp)。血壓則是在不同處理間無顯著差異 (p > .05)。結論:不論是在單獨進行阻力運動後或是單獨攝取果糖後都會引發血液尿酸濃度上升,當兩者合併處理時會使得尿酸增加的幅度更大;阻力運動結合果糖攝取後並未造成血壓產生明顯的變化,但卻會使乳酸與心率恢復較單次阻力運動後慢。

    Background: The incidence and prevalence of hyperuricemia, caused by purine metabolism disorders, have considerably increased. Moreover, patients with hyperuricemia often have multiple comorbidities such as hypertension, chronic renal disease, and other metabolic syndromes. Therefore, hyperuricemia has a negative impact on public health. Epidemiological studies have indicated that excessive fructose intake has strong correlation with hyperuricemia. Fructokinase catalyzes fructose by using adenosine triphosphate (ATP). However, fructokinase has no negative feedback system to prevent excessive phosphorylation, which results in ATP depletion and activation of purine degradation to overproduce uric acid. Strenuous exercise also causes rapid ATP depletion in the skeletal muscles. After purine metabolites are released into the blood, uric acid is synthesized in the liver. Both fructose intake and strenuous exercise can increase blood uric acid levels. Although studies have evaluated the effect of acute high-intensity intermittent exercise or acute continuous aerobic exercise on uric acid levels, few have examined changes in uric acid levels after acute resistance exercise. Purpose: The present study investigated the effect of acute resistance exercise combined with high fructose intake on uric acid levels. Methods: Twelve healthy young men (age: 23.00 ± 2.50) were recruited in this study and were randomized into four trials: resistance exercise + fructose (EF), resistance exercise + water (EW), no exercise + fructose (CF), and no exercise + water (CW). The participants performed 70% 1RM of whole-body resistance exercise (deadlift → bench press → squat → standing row) and then ingested a test drink (containing fructose: 0.75 g/kg). Blood uric acid and lactate levels, heart rate, and blood pressure were measured at fasting; before exercise; and immediately, 0.5 h , 1 h , 2 h, 4 h, and 24 h after exercise. All testing data were analyzed using 4 (trial) × 8 (time) two-way repeated-measures analysis of variance. Result: Blood uric acid levels were significantly increased after resistance exercise and lasted until 24 h after exercise (EF: 7.02 mg/dL, ↑1.31 mg/dL, 23%; EW: 6.84 mg/dL, ↑1.08 mg/dL, 17%). After fructose ingestion, blood uric acid significantly increased at 0.5 h after exercise (6.24 mg/dL, ↑0.58 mg/dL, 10%) and at 1 h after exercise (6.08 mg/dL, ↑0.43 mg/dL, 8%). The combination of resistance exercise and fructose ingestion significantly increased the levels of uric acid more than resistance exercise or fructose ingestion alone at 1 h after exercise (9.03 mg/dL, ↑3.59 mg/dL, 63%) and at 2 h after exercise (9.04 mg/dL, ↑3.33 mg/dL, 58%). Blood lactate levels were significantly increased until 1 h after exercise (p < .05) after resistance exercise. After fructose ingestion, blood lactate was significantly increased in 1 hour (p < .05). Blood lactate was significantly higher with the combination of resistance exercise and fructose ingestion than resistance exercise alone (EF: ↑2.38 mg/dL, 179%; EW: ↑1.65 mg/dL, 149%) and didn’t return to baseline at 2 h after exercise (↑1.19 mg/dL, 89%). The changes in heart rate displayed a similar trend to blood lactate levels. The heart rate was significantly higher in the EF trial than in the other three trials, at 4 h after exercise (EF: 74.58 bmp; EW: 67.42 bmp; CF:65.68 bmp; CW: 65.83 bmp). Blood pressure was not significantly different among trials (p > .05). Conclusion: After acute resistance exercise or fructose ingestion alone, uric acid levels immediately increased, and this increase was even higher with the combination of resistance exercise and fructose ingestion. Moreover, with the combination treatment, blood pressure did not change but blood lactate and heart rate decreased more slowly.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究假設 2 第四節 研究範圍與限制 3 第五節 研究重要性. 3 第貳章 文獻探討 4 第一節 高尿酸血症 4 第二節 果糖與尿酸 9 第三節 運動與尿酸 13 第四節 本章總結 21 第參章 研究方法 22 第一節 實驗參與者 22 第二節 實驗時間與地點 22 第三節 實驗設計 22 第四節 實驗步驟與方法 23 第五節 實驗數據與統計分析 27 第肆章 研究結果 28 第一節 實驗參與者 28 第二節 運動及/或果糖對血液尿酸濃度之影響 28 第三節 運動及/或果糖對血液乳酸濃度之影響 30 第四節 運動及/或果糖對血壓與心率之影響 31 第伍章 研究討論 34 第一節 阻力運動與果糖對於血液尿酸濃度變化的影響 34 第二節 阻力運動與果糖對於血液乳酸濃度變化的影響 36 第三節 阻力運動與果糖對於血壓的影響 37 第四節 結論 38 參考文獻 39 附錄 44 附錄一 實驗參與者同意書 44 附錄二 普林含量食物選擇表 45 附錄三 最大肌力測驗記錄表 46 附錄四 實驗流程記錄表 47 附錄五 阻力運動記錄表 48

    李灝. (2009). 從競技運動的競爭觀點與道德觀點論其目標與目的. 競技運動, 11(1), 35-42. https://doi.org/10.29794/CCYT.200909.0005
    行政院衛生福利部 (2015,8月14日)。遠離甜飲多喝水 健康減糖Everyday 近9成的國、高中學生每週至少喝1次含糖飲料。衛生福利部國民健康署新聞稿。https://www.mohw.gov.tw/cp-2647-20285-1.html
    行政院衛生福利部 (2016)。痛風與高尿酸。衛生福利部國民健康署網站。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=219
    行政院衛生福利部 (2018)。國人糖攝取量上限。衛生福利部國民健康署網站。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1661&pid=9709
    陳得源, 余光輝, 謝祖怡, 郭美娟, 李奕德, & 許百豐. (2018). 高尿酸血症的全身性影響及最新治療建議 [Systemic Impacts of Hyperuricemia]. 內科學誌, 29(1), 1-7. https://doi.org/10.6314/jimt.201802_29(1).01
    行政院衛生福利部 (2019)。國民營養健康狀況變遷調查成果報告 2013-2016年。衛生福利部國民健康署網站。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3999&pid=11145
    內政部統計處 (2019)。飲料店營業額連續14年正成長。內政部統計處產業簡訊。https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=6099
    Atamaniuk, J., Vidotto, C., Kinzlbauer, M., Bachl, N., Tiran, B., & Tschan, H. (2010). Cell-free plasma DNA and purine nucleotide degradation markers following weightlifting exercise. Eur J Appl Physiol, 110(4), 695-701. https://doi.org/10.1007/s00421-010-1532-5
    Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
    Baldree, L. A., & Stapleton, F. B. (1990). Uric acid metabolism in children. Pediatr Clin North Am, 37(2), 391-418. https://doi.org/10.1016/s0031-3955(16)36876-6
    Bellinger, B. M., Bold, A., Wilson, G. R., Noakes, T. D., & Myburgh, K. H. (2000). Oral creatine supplementation decreases plasma markers of adenine nucleotide degradation during a 1-h cycle test. Acta Physiol Scand, 170(3), 217-224. https://doi.org/10.1046/j.1365-201x.2000.00777.x
    Borghi, C., Agnoletti, D., Cicero, A. F. G., Lurbe, E., & Virdis, A. (2022). Uric Acid and Hypertension: a Review of Evidence and Future Perspectives for the Management of Cardiovascular Risk. Hypertension, 79(9), 1927-1936. https://doi.org/doi:10.1161/HYPERTENSIONAHA.122.17956
    Campion, E. W., Glynn, R. J., & Delabry, L. O. (1987). Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. The American Journal of Medicine, 82(3), 421-426. https://doi.org/https://doi.org/10.1016/0002-9343(87)90441-4
    Chang, H. Y., Pan, W. H., Yeh, W. T., & Tsai, K. S. (2001). Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993-96). J Rheumatol, 28(7), 1640-1646.
    Chapman, C. L., Johnson, B. D., Sackett, J. R., Parker, M. D., & Schlader, Z. J. (2019). Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 316(3), R189-R198. https://doi.org/10.1152/ajpregu.00351.2018
    Chen, J.-H., Chuang, S.-Y., Chen, H.-J., Yeh, W.-T., & Pan, W.-H. (2009). Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: A chinese cohort study. Arthritis Care & Research, 61(2), 225-232. https://doi.org/https://doi.org/10.1002/art.24164
    Dalbeth, N. (2013). Pathological basis of hyperuricemia and gout. In Gout (pp. 24-37). https://doi.org/10.2217/ebo.13.105
    Dehghan, A., van Hoek, M., Sijbrands, E. J. G., Hofman, A., & Witteman, J. C. M. (2008). High Serum Uric Acid as a Novel Risk Factor for Type 2 Diabetes. Diabetes Care, 31(2), 361-362. https://doi.org/10.2337/dc07-1276
    Dehlin, M., Jacobsson, L., & Roddy, E. (2020). Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol, 16(7), 380-390. https://doi.org/10.1038/s41584-020-0441-1
    Dornas, W. C., de Lima, W. G., Pedrosa, M. L., & Silva, M. E. (2015). Health implications of high-fructose intake and current research. Adv Nutr, 6(6), 729-737. https://doi.org/10.3945/an.114.008144
    Dudzinska, W., Lubkowska, A., Dolegowska, B., & Safranow, K. (2010). Blood uridine concentration may be an indicator of the degradation of pyrimidine nucleotides during physical exercise with increasing intensity. J Physiol Biochem, 66(3), 189-196. https://doi.org/10.1007/s13105-010-0023-9
    Dudzinska, W., Suska, M., Lubkowska, A., Jakubowska, K., Olszewska, M., Safranow, K., & Chlubek, D. (2018). Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J Physiol Sci, 68(3), 293-305. https://doi.org/10.1007/s12576-017-0536-x
    Facchini, F., Chen, Y.-D. I., Hollenbeck, C. B., & Reaven, G. M. (1991). Relationship Between Resistance to Insulin-Mediated Glucose Uptake, Urinary Uric Acid Clearance, and Plasma Uric Acid Concentration. JAMA, 266(21), 3008-3011. https://doi.org/10.1001/jama.1991.03470210076036
    Gerber, T., Borg, M. L., Hayes, A., & Stathis, C. G. (2014). High-intensity intermittent cycling increases purine loss compared with workload-matched continuous moderate intensity cycling. Eur J Appl Physiol, 114(7), 1513-1520. https://doi.org/10.1007/s00421-014-2878-x
    Gersch, C., Palii, S. P., Kim, K. M., Angerhofer, A., Johnson, R. J., & Henderson, G. N. (2008). Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids, 27(8), 967-978. https://doi.org/10.1080/15257770802257952
    Gibala, M. J., & McGee, S. L. (2008). Metabolic Adaptations to Short-term High-Intensity Interval Training: A Little Pain for a Lot of Gain? Exercise and Sport Sciences Reviews, 36(2), 58-63. https://doi.org/10.1097/JES.0b013e318168ec1f
    Gorostiaga, E. M., Navarro-Amézqueta, I., Calbet, J. A., Hellsten, Y., Cusso, R., Guerrero, M., Granados, C., González-Izal, M., Ibañez, J., & Izquierdo, M. (2012). Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One, 7(7), e40621. https://doi.org/10.1371/journal.pone.0040621
    Hannou, S. A., Haslam, D. E., McKeown, N. M., & Herman, M. A. (2018). Fructose metabolism and metabolic disease. J Clin Invest, 128(2), 545-555. https://doi.org/10.1172/jci96702
    Hellsten-Westing, Y., Kaijser, L., Ekblom, B., & Sjödin, B. (1994). Exchange of purines in human liver and skeletal muscle with short-term exhaustive exercise. Am J Physiol, 266(1 Pt 2), R81-86. https://doi.org/10.1152/ajpregu.1994.266.1.R81
    Hellsten-Westing, Y., Sollevi, A., & Sjödin, B. (1991). Plasma accumulation of hypoxanthine, uric acid and creatine kinase following exhausting runs of differing durations in man. Eur J Appl Physiol Occup Physiol, 62(5), 380-384. https://doi.org/10.1007/bf00634977
    Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J., Khan, T. A., Leiter, L. A., Wolever, T. M. S., Kendall, C. W. C., Jenkins, D. J. A., & Sievenpiper, J. L. (2016). Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ open, 6(10), e013191-e013191. https://doi.org/10.1136/bmjopen-2016-013191
    Jamurtas, A. Z., Fatouros, I. G., Deli, C. K., Georgakouli, K., Poulios, A., Draganidis, D., Papanikolaou, K., Tsimeas, P., Chatzinikolaou, A., Avloniti, A., Tsiokanos, A., & Koutedakis, Y. (2018). The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J Sports Sci Med, 17(3), 501-508.
    Johnson, R., Sánchez-Lozada, L., & Nakagawa, T. (2010). The Effect of Fructose on Renal Biology and Disease. Journal of the American Society of Nephrology : JASN, 21, 2036-2039. https://doi.org/10.1681/ASN.2010050506
    Kakutani-Hatayama, M., Kadoya, M., Okazaki, H., Kurajoh, M., Shoji, T., Koyama, H., Tsutsumi, Z., Moriwaki, Y., Namba, M., & Yamamoto, T. (2017). Nonpharmacological Management of Gout and Hyperuricemia: Hints for Better Lifestyle. Am J Lifestyle Med, 11(4), 321-329. https://doi.org/10.1177/1559827615601973
    Kanbay, M., Segal, M., Afsar, B., Kang, D. H., Rodriguez-Iturbe, B., & Johnson, R. J. (2013). The role of uric acid in the pathogenesis of human cardiovascular disease. Heart, 99(11), 759-766. https://doi.org/10.1136/heartjnl-2012-302535
    Koep, J. L., Barker, A. R., Banks, R., Banger, R. R., Lester, A., Sansum, K. M., Weston, M. E., & Bond, B. (2021). The acute and postprandial effects of sugar moiety on vascular and metabolic health outcomes in adolescents. Appl Physiol Nutr Metab, 46(8), 906-914. https://doi.org/10.1139/apnm-2020-0853
    Krishnan, E., Pandya, B. J., Chung, L., Hariri, A., & Dabbous, O. (2012). Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol, 176(2), 108-116. https://doi.org/10.1093/aje/kws002
    Kuo, C.-F., Grainge, M. J., Zhang, W., & Doherty, M. (2015). Global epidemiology of gout: prevalence, incidence and risk factors. Nature Reviews Rheumatology, 11(11), 649-662. https://doi.org/10.1038/nrrheum.2015.91
    Lanaspa, M. A., Sanchez-Lozada, L. G., Choi, Y.-J., Cicerchi, C., Kanbay, M., Roncal-Jimenez, C. A., Ishimoto, T., Li, N., Marek, G., & Duranay, M. (2012). Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and-independent fatty liver. Journal of Biological Chemistry, 287(48), 40732-40744.
    Lanaspa, M. A., Sanchez-Lozada, L. G., Cicerchi, C., Li, N., Roncal-Jimenez, C. A., Ishimoto, T., Le, M., Garcia, G. E., Thomas, J. B., Rivard, C. J., Andres-Hernando, A., Hunter, B., Schreiner, G., Rodriguez-Iturbe, B., Sautin, Y. Y., & Johnson, R. J. (2012). Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One, 7(10), e47948. https://doi.org/10.1371/journal.pone.0047948
    Lanaspa, M. A., Tapia, E., Soto, V., Sautin, Y., & Sánchez-Lozada, L. G. (2011). Uric Acid and Fructose: Potential Biological Mechanisms. Seminars in Nephrology, 31(5), 426-432. https://doi.org/10.1016/j.semnephrol.2011.08.006
    Lee, T. H., Chen, J.-J., Wu, C.-Y., Yang, C.-W., & Yang, H.-Y. (2021). Hyperuricemia and Progression of Chronic Kidney Disease: A Review from Physiology and Pathogenesis to the Role of Urate-Lowering Therapy. Diagnostics, 11(9), 1674. https://www.mdpi.com/2075-4418/11/9/1674
    Leyva, F., Anker, S., Swan, J. W., Godsland, I. F., Wingrove, C. S., Chua, T. P., Stevenson, J. C., & Coats, A. J. S. (1997). Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. European Heart Journal, 18(5), 858-865. https://doi.org/10.1093/oxfordjournals.eurheartj.a015352
    Li, Y., Bopp, M., Botta, F., Nussbaumer, M., Schäfer, J., Roth, R., Schmidt-Trucksäss, A., & Hanssen, H. (2015). Lower Body vs. Upper Body Resistance Training and Arterial Stiffness in Young Men. Int J Sports Med, 36(12), 960-967. https://doi.org/10.1055/s-0035-1549921
    Lima, W. G., Martins-Santos, M. E. S., & Chaves, V. E. (2015). Uric acid as a modulator of glucose and lipid metabolism. Biochimie, 116, 17-23. https://doi.org/https://doi.org/10.1016/j.biochi.2015.06.025
    Liu, W. C., Hung, C. C., Chen, S. C., Yeh, S. M., Lin, M. Y., Chiu, Y. W., Kuo, M. C., Chang, J. M., Hwang, S. J., & Chen, H. C. (2012). Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol, 7(4), 541-548. https://doi.org/10.2215/cjn.09420911
    Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. (2016). Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213, 8-14. https://doi.org/10.1016/j.ijcard.2015.08.109
    Mazzali, M., Kanbay, M., Segal, M. S., Shafiu, M., Jalal, D., Feig, D. I., & Johnson, R. J. (2010). Uric Acid and Hypertension: Cause or Effect? Current Rheumatology Reports, 12(2), 108-117. https://doi.org/10.1007/s11926-010-0094-1
    Merriman, T. R. (2015). An update on the genetic architecture of hyperuricemia and gout. Arthritis research & therapy, 17(1), 98. https://doi.org/10.1186/s13075-015-0609-2
    Morton, A. R. (2008). Chapter 8 - Exercise Physiology. In L. M. Taussig & L. I. Landau (Eds.), Pediatric Respiratory Medicine (Second Edition) (pp. 89-99). Mosby. https://doi.org/https://doi.org/10.1016/B978-032304048-8.50012-8
    Obermayr, R. P., Temml, C., Gutjahr, G., Knechtelsdorfer, M., Oberbauer, R., & Klauser-Braun, R. (2008). Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol, 19(12), 2407-2413. https://doi.org/10.1681/asn.2008010080
    Okamoto, T., Masuhara, M., & Ikuta, K. (2009). Upper but not lower limb resistance training increases arterial stiffness in humans. European Journal of Applied Physiology, 107(2), 127-134. https://doi.org/10.1007/s00421-009-1110-x
    Puddu, P., Puddu, G. M., Cravero, E., Vizioli, L., & Muscari, A. (2012). The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: Molecular mechanisms and clinical implications. Journal of Cardiology, 59(3), 235-242. https://doi.org/https://doi.org/10.1016/j.jjcc.2012.01.013
    Richter, M. M., & Plomgaard, P. (2021). The Regulation of Circulating Hepatokines by Fructose Ingestion in Humans. J Endocr Soc, 5(9), bvab121. https://doi.org/10.1210/jendso/bvab121
    Rodríguez-Pérez, M. A., Alcaraz-Ibáñez, M., Lorente-Camacho, D., & García-Ramos, A. (2020). Does the level of effort during resistance training influence arterial stiffness and blood pressure in young healthy adults? Isokinetics and Exercise Science, 28, 375-382. https://doi.org/10.3233/IES-202154
    Ruilope, L. M., & Rodicio, J. L. (1999). Renal Surrogates in Essential Hypertension. Clinical and Experimental Hypertension, 21(5-6), 609-614. https://doi.org/10.3109/10641969909060993
    Ryu, K. A., Kang, H. H., Kim, S. Y., Yoo, M. K., Kim, J. S., Lee, C. H., & Wie, G. A. (2014). Comparison of Nutrient Intake and Diet Quality Between Hyperuricemia Subjects and Controls in Korea. cnr, 3(1), 56-63. https://doi.org/10.7762/cnr.2014.3.1.56
    Saito, H., Tanaka, K., Iwasaki, T., Oda, A., Watanabe, S., Kanno, M., Kimura, H., Shimabukuro, M., Asahi, K., Watanabe, T., & Kazama, J. J. (2021). Xanthine oxidase inhibitors are associated with reduced risk of cardiovascular disease. Sci Rep, 11(1), 1380. https://doi.org/10.1038/s41598-020-80835-8
    Sheehan, T. P., McConnell, T. R., & Andreacci, J. L. (2018). Impact of Resistance Exercise on Cardiovascular Dynamics [Report]. Journal of Exercise Physiology Online, 21, 122+. https://link.gale.com/apps/doc/A535421505/HRCA?u=googlescholar&sid=googleScholar&xid=163c42cf
    Singh, G., Lingala, B., & Mithal, A. (2019). Gout and hyperuricaemia in the USA: prevalence and trends. Rheumatology (Oxford), 58(12), 2177-2180. https://doi.org/10.1093/rheumatology/kez196
    Stathis, C. G., Zhao, S., Carey, M. F., & Snow, R. J. (1999). Purine loss after repeated sprint bouts in humans. Journal of Applied Physiology, 87(6), 2037-2042. https://doi.org/10.1152/jappl.1999.87.6.2037
    Sutton, J. R., Toews, C. J., Ward, G. R., & Fox, I. H. (1980). Purine metabolism during strenuous muscular exercise in man. Metabolism, 29(3), 254-260. https://doi.org/10.1016/0026-0495(80)90067-0
    Tappy, L., & Rosset, R. (2019). Health outcomes of a high fructose intake: the importance of physical activity. J Physiol, 597(14), 3561-3571. https://doi.org/10.1113/jp278246
    Taskinen, M.-R., Packard, C. J., & Borén, J. (2019). Dietary Fructose and the Metabolic Syndrome. Nutrients, 11(9), 1987. https://www.mdpi.com/2072-6643/11/9/1987
    Ter Maaten, J. C., Voorburg, A., Heine, R. J., Ter Wee, P. M., Donker, A. J., & Gans, R. O. (1997). Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. Clin Sci (Lond), 92(1), 51-58. https://doi.org/10.1042/cs0920051
    Volek, J. S., Kraemer, W. J., Rubin, M. R., Gómez, A. L., Ratamess, N. A., & Gaynor, P. (2002). l-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. American Journal of Physiology-Endocrinology and Metabolism, 282(2), E474-E482. https://doi.org/10.1152/ajpendo.00277.2001
    Wei, C.-Y., Sun, C.-C., Wei, J. C.-C., Tai, H.-C., Sun, C.-A., Chung, C.-F., Chou, Y.-C., Lin, P.-L., & Yang, T. (2015). Association between Hyperuricemia and Metabolic Syndrome: An Epidemiological Study of a Labor Force Population in Taiwan. BioMed Research International, 2015, 369179. https://doi.org/10.1155/2015/369179
    Westing, Y. H., Ekblom, B., & SjÖDin, R. (1989). The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running [https://doi.org/10.1111/j.1748-1716.1989.tb08762.x]. Acta Physiologica Scandinavica, 137(3), 341-345. https://doi.org/https://doi.org/10.1111/j.1748-1716.1989.tb08762.x
    White, J. S. (2008). Straight talk about high-fructose corn syrup: what it is and what it ain't. Am J Clin Nutr, 88(6), 1716s-1721s. https://doi.org/10.3945/ajcn.2008.25825B
    Wu, G., & Meininger, C. J. (2009). Nitric oxide and vascular insulin resistance. Biofactors, 35(1), 21-27. https://doi.org/10.1002/biof.3
    Xiong, Q., Liu, J., & Xu, Y. (2019). Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. Int J Endocrinol, 2019, 9691345. https://doi.org/10.1155/2019/9691345
    Zhang, C., Li, L., Zhang, Y., & Zeng, C. (2020). Recent advances in fructose intake and risk of hyperuricemia. Biomedicine & Pharmacotherapy, 131, 110795. https://doi.org/https://doi.org/10.1016/j.biopha.2020.110795

    下載圖示
    QR CODE