簡易檢索 / 詳目顯示

研究生: 穆可筠
Mu, Ko-Yun
論文名稱: 優化以邏輯閘(AND gate)建構之全細胞生物感測器並檢測苯乙胺
A Whole-Cell Biosensor Based on AND gate system for the Detection of Phenylethylamine
指導教授: 葉怡均
Yeh, Yi-Chun
口試委員: 葉怡均
Yeh, Yi-Chun
蔡伸隆
Tsai, Shen-Long
杜玲嫻
Tu, Ling-Hsien
口試日期: 2023/06/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 122
中文關鍵詞: 生物胺全細胞生物感測器苯乙胺
英文關鍵詞: Phenylethylamine, AND gate system, whole-cell biosensor
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400576
論文種類: 學術論文
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 苯乙胺是一種生物胺,同時也是一種中樞神經系統的興奮物質,通常存在於巧克力和發酵食品中,由於微生物中含有氨基酸脫羧基酶,因此檢測苯乙胺可得知食品的新鮮度。目前,科學家們使用高效液相色譜法、電化學法、螢光材料等儀器對苯乙胺進行檢測,我們實驗室則是使用全細胞生物感測器對苯乙胺進行定量。不過在先前的研究中,苯乙胺感測器並不專一,因此我們對以重組紅螢光蛋白及邏輯閘AND gate系統設計的全細胞生物感測器進行了報導基因、連接子、核醣體結合位點、啟動子的優化。另外,我們也藉由表達氧化酶 (TynA) 和苯乙醛脫氫酶 (FeaB) 蛋白使苯乙胺能夠快速轉化為苯乙醛及苯乙酸,增加檢測環境中苯乙醛和苯乙酸的濃度,使AND gate系統可以更快速的產生重組紅螢光訊號來增加感測器的專一性及優化誘導螢光結果,在研究過程中也找到了最佳的誘導時間和最專一的感測器,並對真實樣品進行初步的檢測,期望開發一個可以實際定量食品中的苯乙胺濃度的全細胞生物感測器。

    Phenylethylamine (PEA) is a biogenic amine and a central nervous system stimulant found in chocolate or fermented foods. Since microorganisms contain amino acid decarboxylase, the freshness of food can be determined by detecting phenethylamine. Currently, scientists use instruments such as HPLC, electrochemical methods, fluorescent materials, etc., to detect phenylethylamine. However, in previous studies from our laboratory, the whole-cell biosensors were not specific to phenethylamine. In this study, we optimized the reporter genes, linkers, ribosome binding sites, and promoters to construct a PEA-specific whole-cell biosensor. We also express the oxidase (TynA) and phenylacetaldehyde dehydrogenase (FeaB) proteins to convert phenylethylamine into phenylacetaldehyde and phenylacetic acid, increase the concentration of phenylacetaldehyde and phenylacetic acid in the environment. After that, AND gate system can generate recombinant red fluorescent proteins more quickly to increase the specificity of the sensor and optimize the induction fold. Furthermore, we determined the best induction time and the most specific sensor, and compared the results with real sample tests. This study has important implications for the convenience of phenethylamine sensing, and the development of this whole-cell biosensor can accurately quantify the concentration of phenylethylamine in food samples.

    誌謝 i 中文摘要 ii ABSTRAT iii 縮寫表 iv 目錄 vi 表目錄 xi 圖目錄 xii Chapter 1 Introduction 1 1-1 生物胺 1 1-1-1 分類及生理現象 1 1-1-2 食品中的生物胺 3 1-1-3 對人體的毒性 4 1-1-4 食品中的生物胺檢測方法 5 1-2 全細胞生物感測器 9 1-2-1 生物感測器 9 1-2-2 大腸桿菌 10 1-2-3 感測機制 11 1-3 苯乙胺 13 1-3-1 代謝途徑 13 1-3-2 檢測方法回顧 14 1-3-3 全細胞生物感測器研究回顧 15 1-4 苯乙胺感測器 21 1-4-1 FeaR/PaaX調控系統 21 1-4-2 邏輯閘 23 1-4-3 重組螢光蛋白與融合標籤 24 1-4-4 感測器設計 25 1-5 研究目的 28 Chapter 2 Materials and Methods 29 2-1 實驗藥品 29 2-2 實驗儀器 33 2-3 基因工程 35 2-3-1 畫盤 (Plate streaking) 35 2-3-2 細菌培養 (Pre-Culture) 36 2-3-3 質體抽取 (Mini-Prep) 37 2-3-4 聚合酶鏈鎖反應 (Polymerase Chain Reaction) 37 2-3-5 膠體電泳 (Gel Electrophoresis) 40 2-3-6 膠體萃取 (Gel Extraction) 42 2-3-7 限制酶切割DNA (restriction Enzyme Digestion) 43 2-3-8 DNA接合反應 (DNA ligation) 44 2-3-9 Golden Gate Assembly 45 2-3-10 KLD 反應 48 2-3-11 轉形作用 (Transformation) 50 2-3-12 Colony PCR check 51 2-3-13 基因定序 52 2-3-14 甘油存菌 (Glycerol stock) 53 2-3-15 建構AND-Gate系統 53 2-4 設計與方法 55 2-4-1 質體設計 55 2-4-2 培養方法 55 2-4-3 誘導 56 2-4-4 螢光分析定量 57 2-4-5 真實樣品前處理 57 2-4-6 真實樣品培養方法 58 2-4-7數據處理 59 Chapter 3 Results and discussions 60 3-1 苯乙胺感測器 60 3-1-1報導基因排列優化 60 3-1-2 Linker長度優化 66 3-1-3 RBS優化 69 3-1-4啟動子優化 70 3-1-5誘導時間優化 72 3-1-6專一性測試 74 3-1-7含tynA及feaB基因之質體建構 77 3-1-8 AND gate系統時間追蹤 81 3-1-9 AND gate系統濃度測試 84 3-1-10 AND gate系統專一性測試 86 3-1-11真實樣品測試 87 Chapter 4 Conclusion 94 Reference 96 附錄 102 附錄1 菌種 102 附錄2 質體 108 附錄3 引子 113 附錄4 質體圖 117

    Li, B.; Lu, S., The importance of amine-degrading enzymes on the biogenic amine degradation in fermented foods: A review. Process Biochemistry 2020, 99, 331-339.
    Sarkadi, L. S., Biogenic amines in fermented foods and health implications. In Fermented foods in health and disease prevention, Elsevier: 2017; pp 625-651.
    Wójcik, W.; Łukasiewicz, M.; Puppel, K., Biogenic amines: formation, action and toxicity–a review. Journal of the Science of Food and Agriculture 2021, 101 (7), 2634-2640.
    Özogul, Y.; Özogul, F., Biogenic amines formation, toxicity, regulations in food. 2019.
    Vinci, G.; Maddaloni, L., Biogenic amines in alcohol-free beverages. Beverages 2020, 6 (1), 17.
    Dabadé, D. S.; Jacxsens, L.; Miclotte, L.; Abatih, E.; Devlieghere, F.; De Meulenaer, B., Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2021, 120, 107497.
    Moret, S.; Smela, D.; Populin, T.; Conte, L. S., A survey on free biogenic amine content of fresh and preserved vegetables. Food chemistry 2005, 89 (3), 355-361.
    Héberger, K.; Csomós, E.; Simon-Sarkadi, L., Principal component and linear discriminant analyses of free amino acids and biogenic amines in Hungarian wines. Journal of agricultural and food chemistry 2003, 51 (27), 8055-8060.
    Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J., Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry 2018, 98, 128-142.
    Visciano, P.; Schirone, M., Update on biogenic amines in fermented and non-fermented beverages. Foods 2022, 11 (3), 353.
    Vasconcelos, H.; de Almeida, J. M.; Matias, A.; Saraiva, C.; Jorge, P. A.; Coelho, L. C., Detection of biogenic amines in several foods with different sample treatments: An overview. Trends in Food Science & Technology 2021, 113, 86-96.
    Önal, A., A review: Current analytical methods for the determination of biogenic amines in foods. Food chemistry 2007, 103 (4), 1475-1486.
    Ordóñez, J. L.; Callejón, R.; Morales, M.; García-Parrilla, M., A survey of biogenic amines in vinegars. Food Chemistry 2013, 141 (3), 2713-2719.
    Zhang, Y.-j.; Zhang, Y.; Zhou, Y.; Li, G.-h.; Yang, W.-z.; Feng, X.-s., A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. Journal of Chromatography A 2019, 1605, 360361.
    Ordóñez, J. L.; Troncoso, A. M.; García-Parrilla, M. D. C.; Callejón, R. M., Recent trends in the determination of biogenic amines in fermented beverages–A review. Analytica chimica acta 2016, 939, 10-25.
    Loukou, Z.; Zotou, A., Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 2003, 996 (1-2), 103-113.
    Pineda, A.; Carrasco, J.; Peña-Farfal, C.; Henríquez-Aedo, K.; Aranda, M., Preliminary evaluation of biogenic amines content in Chilean young varietal wines by HPLC. Food Control 2012, 23 (1), 251-257.
    Preti, R.; Vinci, G., Biogenic amine content in red wines from different protected designations of origin of Southern Italy: chemometric characterization and classification. Food Analytical Methods 2016, 9 (8), 2280-2287.
    Dadáková, E.; Křížek, M.; Pelikánová, T., Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food chemistry 2009, 116 (1), 365-370.
    Angulo, M. F.; Flores, M.; Aranda, M.; Henriquez-Aedo, K., Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food chemistry 2020, 309, 125689.
    Li, G.; Dong, L.; Wang, A.; Wang, W.; Hu, N.; You, J., Simultaneous determination of biogenic amines and estrogens in foodstuff by an improved HPLC method combining with fluorescence labeling. LWT-Food Science and Technology 2014, 55 (1), 355-361.
    Önal, A.; Tekkeli, S. E. K.; Önal, C., A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food chemistry 2013, 138 (1), 509-515.
    Tırıs, G.; Yanıkoğlu, R. S.; Ceylan, B.; Egeli, D.; Tekkeli, E. K.; Önal, A., A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chemistry 2022, 133919.
    Goode, J.; Rushworth, J.; Millner, P., Biosensor regeneration: a review of common techniques and outcomes. Langmuir 2015, 31 (23), 6267-6276.
    Velasco-Garcia, M. N.; Mottram, T., Biosensor technology addressing agricultural problems. Biosystems engineering 2003, 84 (1), 1-12.
    Queirós, R. B.; De-Los-Santos-Álvarez, N.; Noronha, J.; Sales, M. G. F., A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins. Sensors and Actuators B: Chemical 2013, 181, 766-772.
    Hilton, J. P.; Nguyen, T. H.; Pei, R.; Stojanovic, M.; Lin, Q., A microfluidic affinity sensor for the detection of cocaine. Sensors and Actuators A: Physical 2011, 166 (2), 241-246.
    Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N., Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosensors and Bioelectronics 2015, 70, 498-503.
    Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R., A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2022, 291, 132928.
    Mujawar, M. A.; Gohel, H.; Bhardwaj, S. K.; Srinivasan, S.; Hickman, N.; Kaushik, A., Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management. Materials Today Chemistry 2020, 17, 100306.
    Chiti, G.; Marrazza, G.; Mascini, M., Electrochemical DNA biosensor for environmental monitoring. Analytica Chimica Acta 2001, 427 (2), 155-164.
    Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G., Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics 2006, 21 (8), 1405-1423.
    Newman, J. D.; Turner, A. P., Home blood glucose biosensors: a commercial perspective. Biosensors and bioelectronics 2005, 20 (12), 2435-2453.
    Anton, B. P.; Raleigh, E. A., Complete genome sequence of NEB 5-alpha, a derivative of Escherichia coli K-12 DH5α. Genome announcements 2016, 4 (6), e01245-16.
    Durfee, T.; Nelson, R.; Baldwin, S.; Plunkett III, G.; Burland, V.; Mau, B.; Petrosino, J. F.; Qin, X.; Muzny, D. M.; Ayele, M., The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. Journal of bacteriology 2008, 190 (7), 2597-2606.
    Liu, C.; Yu, H.; Zhang, B.; Liu, S.; Liu, C.-g.; Li, F.; Song, H., Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnology Advances 2022, 108019.
    Obata, Y.; Kubota-Sakashita, M.; Kasahara, T.; Mizuno, M.; Nemoto, T.; Kato, T., Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Scientific Reports 2022, 12 (1), 17.
    Rottinghaus, A. G.; Xi, C.; Amrofell, M. B.; Yi, H.; Moon, T. S., Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals. Cell Systems 2022, 13 (3), 204-214. e4.
    Lin, Y.-K.; Yeh, Y.-C., Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Analytical chemistry 2017, 89 (21), 11178-11182.
    Hsu, L.-W.; Lin, Y.-H.; Guo, J.-Y.; Chen, C.-F.; Chou, Y.-J.; Yeh, Y.-C., Simultaneous determination of l-phenylalanine, phenylethylamine, and phenylacetic acid using three-color whole-cell biosensors within a microchannel device. ACS Applied Bio Materials 2020, 3 (8), 5120-5125.
    Teufel, R.; Mascaraque, V.; Ismail, W.; Voss, M.; Perera, J.; Eisenreich, W.; Haehnel, W.; Fuchs, G., Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences 2010, 107 (32), 14390-14395.
    Zeng, J.; Spiro, S., Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. Journal of bacteriology 2013, 195 (22), 5141-5150.
    Dı́az, E.; Ferrández, A.; Prieto, M. a. A.; Garcı́a, J. L., Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 2001, 65 (4), 523-569.
    Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A. C.; Gunnlaugsson, T.; James, T. D.; Yoon, J.; Akkaya, E. U., Molecular logic gates: the past, present and future. Chemical Society Reviews 2018, 47 (7), 2228-2248.
    Lu, L.; Chen, C.; Zhao, D.; Sun, J.; Yang, X., Europium luminescence used for logic gate and ions sensing with enoxacin as the antenna. Analytical chemistry 2016, 88 (2), 1238-1245.
    Chen, J.; Pan, J.; Liu, C., Versatile sensing platform for Cd2+ detection in rice samples and its applications in logic gate computation. Analytical chemistry 2020, 92 (8), 6173-6180.
    Xie, W. Y.; Huang, W. T.; Li, N. B.; Luo, H. Q., Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chemical Communications 2012, 48 (1), 82-84.
    Hu, J.; Hu, Z.; Chen, Z.; Gao, H.-W.; Uvdal, K., A logic gate-based fluorogenic probe for Hg2+ detection and its applications in cellular imaging. Analytica Chimica Acta 2016, 919, 85-93.
    Huang, W. T.; Shi, Y.; Xie, W. Y.; Luo, H. Q.; Li, N. B., A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide: use for detection of Hg 2+ and molecular logic gate operation. Chemical Communications 2011, 47 (27), 7800-7802.
    Lu, W.; Gao, Y.; Jiao, Y.; Shuang, S.; Li, C.; Dong, C., Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu 2+ and its logic gate operation. Nanoscale 2017, 9 (32), 11545-11552.
    Silva-Rocha, R.; de Lorenzo, V., Mining logic gates in prokaryotic transcriptional regulation networks. FEBS letters 2008, 582 (8), 1237-1244.
    Yu, S.; Wang, Y.; Jiang, L.-P.; Bi, S.; Zhu, J.-J., Cascade amplification-mediated in situ hot-spot assembly for microRNA detection and molecular logic gate operations. Analytical chemistry 2018, 90 (7), 4544-4551.
    Lin, Y.; Tao, Y.; Pu, F.; Ren, J.; Qu, X., Combination of graphene oxide and thiol‐activated DNA metallization for sensitive fluorescence turn‐on detection of cysteine and their use for logic gate operations. Advanced Functional Materials 2011, 21 (23), 4565-4572.
    Guo, J.-H.; Kong, D.-M.; Shen, H.-X., Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes. Biosensors and bioelectronics 2010, 26 (2), 327-332.
    Shaner, N. C.; Patterson, G. H.; Davidson, M. W., Advances in fluorescent protein technology. Journal of cell science 2007, 120 (24), 4247-4260.
    Day, R. N.; Davidson, M. W., The fluorescent protein palette: tools for cellular imaging. Chemical Society Reviews 2009, 38 (10), 2887-2921.
    Feng, S.; Sekine, S.; Pessino, V.; Li, H.; Leonetti, M. D.; Huang, B., Improved split fluorescent proteins for endogenous protein labeling. Nature communications 2017, 8 (1), 370.
    Feng, S.; Varshney, A.; Coto Villa, D.; Modavi, C.; Kohler, J.; Farah, F.; Zhou, S.; Ali, N.; Müller, J. D.; Van Hoven, M. K., Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Communications biology 2019, 2 (1), 344.
    Reddington, S. C.; Howarth, M., Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Current opinion in chemical biology 2015, 29, 94-99.
    Li, L.; Fierer, J. O.; Rapoport, T. A.; Howarth, M., Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag. Journal of molecular biology 2014, 426 (2), 309-317.
    Sun, F.; Zhang, W.-B.; Mahdavi, A.; Arnold, F. H.; Tirrell, D. A., Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proceedings of the National Academy of Sciences 2014, 111 (31), 11269-11274.
    Garibyan, L.; Avashia, N., Research techniques made simple: polymerase chain reaction (PCR). The Journal of investigative dermatology 2013, 133 (3), e6.
    Drabik, A.; Bodzoń-Kułakowska, A.; Silberring, J., Gel electrophoresis. In Proteomic profiling and analytical chemistry, Elsevier: 2016; pp 115-143.
    http://www.bio-protech.com.tw/products_detailed.php?id=286.
    http://www.bio-rotech.com.tw/products_detailed.php?id=285.
    https://www.snapgene.com/guides/restriction-enzyme-cloning.
    HamediRad, M.; Weisberg, S.; Chao, R.; Lian, J.; Zhao, H., Highly efficient single-pot scarless Golden Gate assembly. ACS synthetic biology 2019, 8 (5), 1047-1054.
    Potapov, V.; Ong, J. L.; Kucera, R. B.; Langhorst, B. W.; Bilotti, K.; Pryor, J. M.; Cantor, E. J.; Canton, B.; Knight, T. F.; Evans Jr, T. C., Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS synthetic biology 2018, 7 (11), 2665-2674.
    https://www.snapgene.com/guides/golden-gate-assembly.
    http://parts.igem.org/Part:BBa_K4361225.
    https://www.thermofisher.com/tw/zt/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/transformation/competent-cell-basics.html.
    Li, Y., Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein expression and purification 2011, 80 (2), 260-267.
    Zhao, Q.; Xu, W.; Xing, L.; Lin, Z., Recombinant production of medium-to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microbial cell factories 2016, 15, 1-9.
    Ramos, R. M.; Valente, I. M.; Rodrigues, J. A., Analysis of biogenic amines in wines by salting-out assisted liquid–liquid extraction and high-performance liquid chromatography with fluorimetric detection. Talanta 2014, 124, 146-151.
    Hernández-Borges, J.; D’Orazio, G.; Aturki, Z.; Fanali, S., Nano-liquid chromatography analysis of dansylated biogenic amines in wines. Journal of chromatography A 2007, 1147 (2), 192-199.

    下載圖示
    QR CODE