簡易檢索 / 詳目顯示

研究生: 李睿益
論文名稱: 硒化鋅和碲化鋅薄層的應力研究
指導教授: 陸健榮
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 84
中文關鍵詞: 硒化鋅碲化鋅應力激子薄膜干涉電場調制
英文關鍵詞: ZnSe, ZnTe, strain, exciton, electroreflectance
論文種類: 學術論文
相關次數: 點閱:175下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電場調制反射光譜(ER)來研究ZnSe薄膜與ZnTe薄膜受應力之下輕電洞能帶與重電洞能帶分裂的情形。樣品是由分子束磊晶法(MBE)長成的ZnSe/GaAs和ZnTe/GaAs薄膜,以及ZnTe/ZnSe/GaAs量子點系統。首先透過計算可以得到薄膜在受完全錯位應力以及熱應力下輕、重電洞的能階分裂大小。再由實驗譜圖分析一階微分或三階微分擬合譜圖,並將各溫度下輕、重電洞能隙以擬合程式找出。探討薄膜厚度和溫度對應力釋放的關係。

    目錄 摘要………………………………………………………………….. Ⅰ 目錄………………………………………………………………..… Ⅱ 圖目錄……………………………………………………………….. Ⅳ 第一章 簡介……………………………………………………….. 1 參考文獻……………………………………………………….… 4 第二章 光調制與螢光光譜原理 2-1 電子躍遷理論……………………………………………... 5 2-2 光學函數與電子躍遷的關係……………………………. 8 2-3 調制光譜的基本原理……………………………………. 14 2-4 電場調制…………………………………………………. 19 2-5 弱電場調制………………………………………………. 23 參考文獻………………………………………………………. 25 第三章 實驗與結果 3-1 樣品結構…………………………………………………. 26 3-2 電場調製實驗及裝置……………………………………. 28 3-3 實驗控制…………………………………………………. 32 第四章 調制光譜譜形的分析與討論 4-1 樣品厚度分析…………………………………………. 36 4-2 應力(strain)對ZnSe和ZnTe能帶結構的影響…………42 4-3 ZnTe和ZnSe薄膜電場調制結果…………………… 50 4-4 ZnTe /ZnSe系統(量子點結構)電場調制結果…...……… 60 參考文獻………………………………………………………. 66 第五章 結論與展望……………………………………………… 68 附錄………………………………………………………………… 69 圖目錄 圖(1-1) 能帶結構中導帶和價帶兩種可能的排列方…………….. 3圖(2-1) 臨界點附近的四種Jcv形態…...………………………….. 12圖(2-2) 不同調制技術對介電函數虛部的影響…...……………... 15圖(2-3) 室溫下,砷化鎵的反射光譜與電調反射光譜之比較圖… 17圖(2-4) 表現出振盪型式的F、G函數…………………………….. 21圖(2-5) FKO極值位置與能隙差值(En-Eg)對n作圖……...……… 22 圖(3-1) ZnTe和ZnSe薄膜樣品結構示意圖………….…………. 27 圖(3-2) ZnTe量子點(3.2ML)樣品結構示意圖………….………. 27 圖(3-3) 電場調制(ER)實驗裝置圖…………………………... … 29圖(3-4) 電場調制(ER)樣品座裝置圖……….………………… 30圖(3-5) Labview 控制步進馬達啟動程式圖…………………... 32圖(3-6) Labview 控制電表的迴圈程式圖…………....……..... 33圖(3-7) 電場調制實驗程式流程圖…………………………….... 35圖(4-1) 薄膜干涉圖……………………………………………... 38 圖(4-2) 硒化鋅、碲化鋅和砷化鎵介電係數與能量關係圖……… 40 圖(4-3) ZnSe薄膜厚度擬合圖…………………………………..... 42圖(4-4) ZnTe薄膜厚度擬合圖………………………………...….. 43 圖(4-5) 硒化鋅能隙以上擬合調整圖………………………….. 45 圖(4-6) 壓縮應力原子排列示意圖…...……..…………………... 47 圖(4-7) 應力造成輕、重電洞能階分裂圖…….. ..………………. 47圖(4-8) ZnSe薄膜在15K時一階微分和三階微分擬合比較圖 …………………………………………………………….. 57 圖(4-9) ZnSe薄膜在270K時一階微分和三階微分擬合比較圖…………………………………………….………. …. 58 圖(4-10) ZnSe在溫度30K、60K和90K時的PL螢光圖………… 59 圖(4-11) ZnSe薄膜輕、重電洞Varshni law擬合圖……………. 60 圖(4-12) ZnTe薄膜在溫度70K和190K時的電場調制擬合圖.. 62圖(4-13) ZnTe薄膜輕、重電洞Varshni law擬合圖…………….… 63圖(4-14) ZnTe量子點結構(3.2ML)在溫度15K時的電場調制圖 65 圖(4-15) ZnTe量子點結構(3.2ML)在溫度60K和150K時的ZnSe能隙電場調制圖………………….. ……………………. 66 圖(4-16) ZnTe量子點結構(3.2ML)保護層Varshni law擬合圖… 67 圖(4-17) ZnTe量子點結構(3.2ML)緩衝層Varshni law擬合圖…. 67 圖(4-18) ZnTe量子點結構(3.2ML)反射光示意圖….…….….…. 69

    參考文獻
    1. S.Adachi and T.Taguchi, “Optical properties of ZnSe ”,Phys.Rev.B43,9569(1991)
    2. Kohzo Sato and Sadao Adachi, “Optical properties of ZnTe ” J. Appl. Phys, 73, 926(1993).
    3. D.E.Aspnes and A.A.Studna, “Dielectric functions and optical parameters of Si, Ge,GaP,GaAs,GaSb,InP,InAs,and InSb from 1.5 to 6.0eV”, Phys.Rev.B27,985(1983)
    4. S. H. Wemple and M. DiDomenico, Jr, “Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials”, Phys. Rev. B 3, 1338-1351 (1971)
    5. F. H. Pollak and M. Cardona, “piezo-Electroreflectance in Ge, GaAs, and Si”, phys. Rev. 172,816(1968).
    6. G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H. Morkoc, “optical investigation of highly strained InGaAs-GaAs multiple quantum wells”, J. Appl. Phys. 62, 3366(1987).
    7. Pikus G E and Bir G L 1960 “Sov. Phys.-Solid State I” 1502.
    8. G.Kudlek, N.Presser, J.Gutowski, K. Hingerl, E.Abramof, H.Sitter, “Photoluminescence and excitation spectroscopy of ZnTe/GaAs epilayers grown by hot-wall epitaxy”, Semicond. Sci. Technol. 6, A90(1991).
    9. M. S. Jang, S. H. Oh, K. H. Lee, J. H. Bahng, J. C. Choi, K. H. Jeong, H. L. Park, D. C. Choo, D. U. Lee, T. W. Kim “The dependence of the strain effects on the ZnTe layer thicknesses in ZnTe/GaAs heterostructures”, J. Physics and Chemistry of Solids. 64, 357-30(2003).
    10. .Xingjun Wang, Daming Huang, Chuangxiang Sheng, and Gencai Yu “Thickness dependence of the exciton and polariton spectra from ZnSe films grown on GaAs substrates”, J. physics and Chemistry of Solids. 64, 357-30(2003)
    11. B. H. Lee, “ Elastic Constants of ZnTe and ZnSe between 77°–300°K”, J. Appl. Phys.41, 2984(1970).
    12. H. Leiderer, G.. Jahn, M. Silberbauer, W. Kuhn, H. P. Wagner, W. Limmer, and W. Gebhardt, “Investigation of strain in metalorganic vapor-phase epitaxy grown ZnTe layers by optical methods”,J. Appl. Phys, 70, 398(1991).
    13. “Numerical Data and Functinal Relationships in Science and Technology”, edited by O. Madelung, M. Schultz and Weiss(Springer, Berlin, 1982), vols. 17a and 17b and references therein.
    14. B. H. Lee, “Pressure Dependence of the Second-Order Elastic Constants of ZnTe and ZnSe”, J. Appl. Phys. 41, 2988(1970).
    15. F. Bousbih, S. Ben Bouzud, R. Chtourou, F. F Charfi, J. C. Harmand, G. Ungaro, Materials Science and Engineering C 21(2002), 251-254.
    16. B. Gil, D. J. Calatayud, and H. Mathieu, “Electronic structure of cadmium-telluride–zinc-telluride strained-layer superlattices under pressure” Physical Review B 40, 5522-5528(1989)
    17. “Narrow-gap Ⅱ - Ⅵ Compounds for Optoelectronic and Electromagnetic Applications” edited by Peter Capper (1997).
    18. “Physical Properties of Ⅲ - Ⅳ semiconductor compounds ” edited by Sadao Adachi, department of Electronic Engineering Gunma University(1992)
    19. “O. J. Glembocki and B. V. Shanabrook, in Semiconductor and Semimetals”, edited by D. G. Seiler and C. L. Littler (Academic, New York, 1992), Vol 36, p. 222.
    20. “F. H. Pollak, in Handbook on Semiconductors”, edited by M. Balkanski (North-Holland, Amsterdam, 1994), Vol. 2, p.527.
    21. F. H. Pollak and H. Shen, Mater. Sci. Eng. R.10, 275(1993).[INSPEC][ISI]
    22. F. H. Pollak, O. J. Glembocki, “Spectroscopic Characterization Techniques for Semiconductor Technology Ⅲ”, Vol. 946. (SPIE, California, 1988), p.2-35.
    23. W Weber,Phys.Rev,B15.4789(1977)
    24. R.Tromer,Ph.D.thesis,Uni Stattgart . FRG(1977), R.Tromer , M Cardona , Solid State Commun,21.153(1977)
    25. “Handbook on Semiconductors” Edit by T. S. Moss,, North Holland, N. Y. ,Vol. 2. p109(1980)
    26. “Modulation Spectroscopy” Edit by M. Cardona,, Academic, N. Y.(1969).
    27. Orest J. Glembocki and Benjamin V.Shanabrook, “Semiconductors and Semimetals. ”Vol 36 p.235
    28. Y.Toyozawa,Prog.Theoret.Phys.(Kyoto)20,53(1958)
    29. “Fundamentals of Semiconductors” Edit by Peter Y.Yu,Manuel Cardona, p.272(1996)
    30. Y.P.Varshni,Physica 34,149(1967)
    31. C. D. Thurmond, J. Electrochem. Soc. 122, 1133 (1975). [INSPEC] [ISI]
    32. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop'ev, Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures ”,Thin Solid Films, 267, 32, 1995.
    33. Goldstein L,Glas F, Marzin J. Y, Charasse M. N. and Le Roux G., “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices” Appl. Phys.Lett. 47,1099(1985)
    34. Kuo, M.C., Yang, C.S., Tseng, P.Y., Lee, J., Shen, J.L., Chou, W.C., Shih, Y.T., Ku, C.T., Lee, M.C, “Formation of self-assembled ZnTe quantum dots on ZnSe buffer layer grown on GaAs substrate by molecular beam epitaxy ” J. Crystal Growth 533/537 (2002) 242.
    35. S. D. Baranovskii, U. Doerr, P. Thomas, A. Naumov, W. Gebhardt, “ Exciton line broadening by compositional disorder in alloy quantum wells”, Phys. Rev. B, 48, 17149(1993).

    QR CODE