簡易檢索 / 詳目顯示

研究生: 林姵吟
Lin, Pei-Yin
論文名稱: 高強度間歇運動與中強度耐力運動對大腦與肌肉氧飽和度之影響
Influences of high intensity interval exercise and moderate intensity endurance exercise on cerebral and muscular oxygen saturation
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 全力衝刺中樞調節運動類型近紅外線光譜儀
英文關鍵詞: all-out sprint, central governor, types of exercise, near-infrared spectroscopy
論文種類: 學術論文
相關次數: 點閱:108下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討高強度間歇運動 (high intensity interval exercise, HIIE) 與中強度耐力運動 (moderate intensity endurance exercise, MIEE) 對大腦與肌肉氧飽和度之影響。方法:本研究共招募12位男性大學生,實施遞增負荷運動測驗以判定最大攝氧量。間隔48小時後,受試者需以隨機平衡次序方式進行HIIE (6趟30秒溫蓋特衝刺,5分鐘動態恢復) 及MIEE (第1換氣閥值的強度,持續60分鐘) 。以近紅外線光譜儀測量左、右前額葉與肌肉的氧飽和度。結果:MIEE的腦部含氧血紅素 (oxyhemoglobin, O2Hb) (右:4.94 ± 1.07; 左:5.00 ± 1.42 µmol ) 顯著高於HIIE的第1趟 (右:2.25 ± 0.99;左:2.30 ± 1.18 µmol) (p < .05) 。腦部去氧含氧血紅素差 (O2Hb difference, DiffHb) 的部分,MIEE的腦部DiffHb (右:3.84 ± 1.05;左:4.32 ± 1.09 µmol) 顯著高於第1趟 (右:1.96 ± 1.04;左:1.94 ± 1.16 µmol) (p < .05) 。除此之外,HIIE後段衝刺的腦部O2Hb與DiffHb皆顯著高於前段 (p < .05) 。肌肉O2Hb的部分,MIEE (-9.10 ± 7.17 µmol) 分別顯著高於HIIE (從第1趟到第6趟分別為:-19.33 ± 5.92;-19.09 ± 5.52;-18.67 ± 5.55;-18.74 ± 5.53;-18.73 ± 5.84;-18.94 ± 6.01 µmol) (p < .05) 。肌肉DiffHb的部分,MIEE (-26.27 ± 11.63 µmol) 顯著高於HIIE (從第1趟到第6趟分別為:-41.21 ± 12.17;-42.46 ± 12.23;-41.76 ± 12.15;-41.08 ± 12.29;-40.39 ± 12.38;-40.02 ± 12.98 µmol) 。結論:相較於MIEE,僅在HIIE初期發現較低的腦部氧飽和度。這可能是由於人體在HIIE中,啟動的保護機制,使大腦得以優先使用氧氣。

    Purpose: To investigate the effects of high intensity interval exercise (HIIE) and moderate intensity endurance exercise (MIEE) on cerebral and muscular oxygenation. Methods: Twelve collegiate male students voluntarily participated in this study. During the first visit, participants performed a graded exercise test to determine the maximal oxygen uptake. After 48 hours, participants performed the HIIE (6 × 30-s Wingate sprints with 5-min active recovery) and MIEE (intensity at 1st ventilatory threshold for 60-min), in a randomized counter-balance order. Near-infrared spectroscopy was used to evaluate the oxygenation in right (R) and left (L) prefrontal cortex and quadriceps. Results: The cerebral oxyhemoglobin (O2Hb) at MIEE (R: 4.94 ± 1.07; L: 5.00 ± 1.42 µmol) was significantly higher than that at 1st sprint (R: 2.25 ± 0.99; L: 2.30 ± 1.18 µmol) (p < .05). The cerebral O2Hb difference (DiffHb) at MIEE (R: 3.8 ± 1.05; L: 4.32 ± 1.09 µmol) was significantly higher than that at 1st sprint (R: 1.96 ± 1.04; L: 1.94 ± 1.16 µmol) (p < .05). Moreover, the cerebral O2Hb and DiffHb at the second period were significantly higher than those at the first period of HIIE. The muscular O2Hb at MIEE (-9.10 ± 7.17 µmol) was significantly higher than those at HIIE (from sprint 1 to 6 were -19.33 ± 5.92, -19.09 ± 5.52, -18.67 ± 5.55, -18.74 ± 5.53, -18.73 ± 5.84, and -18.94 ± 6.01 µmol) (p < .05). The muscular DiffHb at MIEE (-26.27 ± 11.63 µmol) was significantly higher than those at HIIE (from sprint 1 to 6 were -41.21 ± 12.17, -42.46 ± 12.23, -41.76 ± 12.15, -41.08 ± 12.29, -40.39 ± 12.38, and -40.02 ± 12.98 µmol) (p < .05). Conclusions: Lower cerebral oxygenation was only found at the first period of HIIE while comparing with the MIEE. Therefore, the brain might have a higher priority of oxygen uptake due to a protective mechanism during the HIIE.

    口試委員與系主任簽字之論文通過簽名表 i 論文授權書 ii 中文摘要 iii 英文摘要 iv 謝誌 (詞) v 目 次 vi 表 次 viii 圖 次 viii 附 錄 x 第壹章 緒論 1 第一節 前言 1 第二節 研究的重要性 4 第三節 研究目的 4 第四節 研究假設 5 第五節 研究範圍與限制 5 第六節 名詞操作性定義 5 第貳章 文獻探討 8 第一節 大腦生理特徵與氧飽和度測量之相關研究 8 第二節 高強度運動對大腦與肌肉氧飽和度之影響 13 第三節 中強度耐力運動對大腦與肌肉氧飽和度之影響 14 第四節 本章總結 16 第參章 研究方法 17 第一節 研究對象 17 第二節 實驗流程設計 17 第三節 實驗時間與地點 17 第四節 實驗流程 18 第五節 實驗步驟與方法 20 第六節 資料處理及統計方法 26 第肆章 結果 27 第一節 受試者基本資料 27 第二節 不同運動模式對運動中大腦氧飽和度之影響 33 第三節 不同運動模式對運動中肌肉氧飽和度之影響 42 第四節 不同運動模式對運動中氣體分析之影響 47 第伍章 討論與結論 49 第一節 不同運動模式對運動中大腦氧飽和度之影響 49 第二節 不同運動模式對運動中肌肉氧飽和度之影響 50 第三節 不同運動模式對運動中氣體分析之影響 52 第四節 綜合討論 53 第五節 結論 55 第六節 建議 55 參考文獻 56 表 次 表1 受試者基本資料 27 表2 腦部組織氧飽和指標 41 表3 肌肉組織氧飽和指標 46 圖 次 圖1 遞增負荷運動時與恢復期的含氧血紅素變化圖 3 圖2 含氧血紅素與去氧血紅素之脈波圖 7 圖3 實驗處理示意圖 18 圖4 實驗流程圖 19 圖5 攝氧量與二氧化碳產生量變化圖 23 圖6 潮氣末氧分壓與運動時間變化圖 23 圖7 氧氣換氣當量與運動時間變化圖 24 圖8 6 × 30秒溫蓋特衝刺測驗之功率峰值 28 圖9 6 × 30秒溫蓋特衝刺測驗之平均功率 29 圖10 6 × 30秒溫蓋特衝刺測驗之疲勞指數 30 圖11 6 × 30秒溫蓋特衝刺測驗之總作功 31 圖12 不同運動模式之右腦含氧血紅素 33 圖13 不同運動模式之左腦含氧血紅素 34 圖14 不同運動模式之右腦去氧血紅素 35 圖15 不同運動模式之左腦去氧血紅素 36 圖16 不同運動模式之右腦總血紅素 37 圖17 不同運動模式之左腦總血紅素 38 圖18 不同運動模式之右腦去氧含氧血紅素差 39 圖19 不同運動模式之左腦去氧含氧血紅素差 40 圖20 不同運動模式之肌肉含氧血紅素 42 圖21 不同運動模式之肌肉去氧血紅素 43 圖22 不同運動模式之肌肉總血紅素 44 圖23 不同運動模式之肌肉去氧含氧血紅素差 45 圖24 不同運動模式之攝氧量 47 圖25 不同運動模式之潮氣末二氧化碳分壓 48 附 錄 附錄一 受試者健康狀況調查表 62 附錄二 受試者須知 63 附錄三 受試者自願同意書 64

    王錫崗 (譯) (2006) 。人體生理學。台北市:新文京。(Stuart Ira Fox, 2005)

    朱文洋、林廷燦、鍾瑞嶂 (2010) 。暈厥 Syncope-An Update。內科學誌,21(2),90-108。

    吳盈光、杜明勳 (2007) 。常見昏厥及其評估。基層醫學, 22(1),28-34。

    邱皓政 (2011) 。量化研究與統計分析 (五版) 。台北市:五南。

    Antosiewicz, J., Kaczor, J. J., Katarzyna, K., Laskowski, R., Kujach, S., Luszczyk, M., ... Ziemann, E. (2013). Repeated “all out” interval exercise causes an increase in serum hepcidin concentration in both trained and untrained men. Cellular Immunology, 283(1-2), 12-17.

    Astorino, T. A., Allen, R. P., Roberson, D. W., Jurancich, M., Lewis, R., & McCarthy, K. (2012). Attenuated RPE and leg pain in response to short-term high-intensity interval training. Physiology and Behavior, 10(2), 402-407.

    Astorino, T. A., Schubert, M. M., Palumbo, E., Stirling, D., & McMillan, D. W. (2013). Effect of two doses of interval training on maximal fat oxidation in sedentary women. Medicine and Science in Sports and Exercise, 45(10), 1878-1886.

    Astorino, T. A., & White, A. C. (2010). Assessment of anaerobic power to verify VO2max attainment. Clinical Physiology and Functional Imaging, 30(4), 294-300.

    Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. Journal of Applied Physiology, 109(2), 457-468.

    Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60(6), 2020-2027.

    Bhambhani, Y. N. (2004). Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Canadian Journal of Applied Physiology, 29(4), 504-523.

    Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology and Neurobiology, 156(2), 196-202.

    Bill, A., & Linder, J. (1976). Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiologica Scandinavica, 96(1), 114-121.

    Billaut, F., Davis, J. M., Smith, K. J., Marino, F. E., & Noakes, T. D. (2010). Cerebral oxygenation decreases but does not impair performance during self‐paced, strenuous exercise. Acta Physiologica, 198(4), 477-486.

    Billaut, F., & Smith, K. (2010). Prolonged repeated-sprint ability is related to arterial O2 in men. International Journal of Sports Physiology and Performance, 5(2), 197-209.

    Buchheit, M., Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2012). Performance and physiological responses during a sprint interval training session: Relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. European Journal of Applied Physiology, 112(2), 767-779.

    Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160.

    Cheung, S. S. (2009). Comments on point: Counterpoint: Maximal oxygen uptake is/is not limited by a central nervous system governor. Journal of Applied Physiology, 106(1), 345.

    Fan, J. L., Bourdillon, N., & Kayser, B. (2013). Effect of end‐tidal CO2 clamping on cerebrovascular function, oxygenation, and performance during 15‐km time trial cycling in severe normobaric hypoxia: The role of cerebral O2 delivery. Physiological Reports, 1(3), 1-15.

    Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., … Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359.

    Gibala, M. J. (2007). High-intensity interval training: A time-efficient strategy for health promotion? Current Sports Medicine Reports, 6(4), 211-213.

    Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.

    Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism, 39(3), 409-412.

    Gillen, J. B., Percival, M. E., Ludzki, A., Tarnopolsky, M. A., & Gibala, M. J. (2013). Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity, 2(11), 2249-2255.

    González‐Alonso, J., Dalsgaard, M. K., Osada, T., Volianitis, S., Dawson, E. A., Yoshiga, C. C., & Secher, N. H. (2004). Brain and central haemodynamics and oxygenation during maximal exercise in humans. The Journal of Physiology, 557(1), 331-342.
    Hamlin, M. J., Marshall, H. C., Hellemans, J., & Ainslie, P. N. (2010). Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: A preliminary report. Applied Physiology, Nutrition, and Metabolism, 35(4), 548-559.

    Harper, A. M., Deshmukh, V. D., Rowan, J. O., & Jennett, W. B. (1972). The influence of sympathetic nervous activity on cerebral blood flow. Archives of Neurology, 27(1), 1-6.

    Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-1662.

    Hughson, R. L. (2009). Oxygen uptake kinetics: Historical perspective and future directions. Applied Physiology, Nutrition, and Metabolism, 34(5), 840-850.

    Ide, K., Boushel, R., Sørensen, H. M., Fernandes, A., Cai, Y., Pott, F., & Secher, N. H. (2000). Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiologica Scandinavica, 170(1), 33-38.

    Ide, K., & Secher, N. H. (2000). Cerebral blood flow and metabolism during exercise.
    Progress in Neurobiology, 61(4), 397-414.

    Imray, C. H. E., Walsh, S., Clarke, T., Tiivas, C., Hoar, H., Harvey, T. C., & Wright, A. D. (2003). Effects of breathing air containing 3%carbon dioxide, 35%oxygen or a mixture of 3%carbon dioxide/35%oxygen on cerebral and peripheral oxygenation at 150 m and 3459 m. Clinical Science, 104(3), 203-210.

    Jones, B., Hesford, C. M., & Cooper, C. E. (2013). The use of portable NIRS to measure muscle oxygenation and haemodynamics during a repeated sprint running test. Oxygen Transport to Tissue XXXV, 789, 185-191.

    Jordan, J., Shannon, J. R., Diedrich, A., Black, B., Costa, F., Robertson, D., & Biaggioni, I. (2000). Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension, 36(3), 383-388.

    Kimm, S. Y., Glynn, N. W., McMahon, R. P., Voorhees, C. C., Striegel-Moore, R. H., & Daniels, S. R. (2006). Self-perceived barriers to activity participation among sedentary adolescent girls. Medicine and Science in Sports and Exercise, 38(3), 534-540.

    Kita, Y., Gunji, A., Inoue, Y., Goto, T., Sakihara, K., Kaga, M., ... & Hosokawa, T. (2011). Self-face recognition in children with autism spectrum disorders: A near-infrared spectroscopy study. Brain and Development, 33(6), 494-503.

    Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience and Biobehavioral Reviews, 26(6), 631-664.

    Madsen, P. L., & Secher, N. H. (1999). Near-infrared oximetry of the brain. Progress in Neurobiology, 58(6), 541-560.

    Miura, H., McCully, K., & Chance, B. (2003). Application of multiple NIRS imaging device to the exercising muscle metabolism. Spectroscopy: An International Journal, 17(2), 549-558.

    Moraine, J. J., Lamotte, M., Berré, J., Niset, G., Leduc, A., & Naeijel, R. (1993). Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. European Journal of Applied Physiology and Occupational Physiology, 67(1), 35-38.

    Moya, A., Sutton, R., Ammirati, F., Blanc, J. J., Brignole, M., Dahm, J. B., ... & Asteggiano, R. (2009). Guidelines for the diagnosis and management of syncope (version 2009). European Heart Journal, 30(21), 2631-2671.

    Neary, J., Hall, K., & Bhambhani, Y. (2001). Vastus medialis muscle oxygenation trends during a simulated 20-km cycle time trial. European Journal of Applied Physiology, 85(5), 427-433.

    Nielsen, H. B., Boesen, M., & Secher, N. H. (2001). Near‐infrared spectroscopy determined brain and muscle oxygenation during exercise with normal and resistive breathing. Acta Physiologica Scandinavica, 171(1), 63-70.

    Noakes, T. D. (2011). Is it time to retire the AV Hill model? Sports Medicine, 41(4), 263-277.

    Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. Journal of Experimental Biology, 204(18), 3225-3234.

    Nybo, L., & Nielsen, B. (2001). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. The Journal of Physiology, 534(1), 279-286.

    Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: Mechanisms of regulation. Journal of Applied Physiology, 107(5), 1370-1380.

    Ogoh, S., Brothers, R. M., Barnes, Q., Eubank, W. L., Hawkins, M. N., Purkayastha, S., & Raven, P. B. (2005). The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. The Journal of Physiology, 569(2), 697-704.

    Ogoh, S., Brothers, R. M., Eubank, W. L., & Raven, P. B. (2008). Autonomic neural control of the cerebral vasculature acute hypotension. Stroke, 39(7), 1979-1987.

    Pereira, M. I., Gomes, P. S., & Bhambhani, Y. N. (2007). A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. Sports Medicine, 37(7), 615-624.

    Périard, J. D., Thompson, M. W., Caillaud, C., & Quaresima, V. (2013). Influence of heat stress and exercise intensity on vastus lateralis muscle and prefrontal cortex oxygenation. European Journal of Applied Physiology, 113(1), 211-222.
    Querido, J. S., & Sheel, A. W. (2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37(9), 765-782.

    Racinais, S., Bishop, D., Denis, R., Lattier, G., Mendez-Villaneuva, A., & Perrey, S. (2007). Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and Science in Sports and Exercise, 39(2), 268-274.

    Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687.

    Romer, L. M., Haverkamp, H. C., Lovering, A. T., Pegelow, D. F., & Dempsey, J. A. (2006). Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 290(2), R365-R375.

    Rooks, C. R., Thom, N. J., McCully, K. K., & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Progress in Neurobiology, 92(2), 134-150.

    Rupp, T., Jubeau, M., Millet, G. Y., Wuyam, B., Levy, P., Verges, S., & Perrey, S. (2013). Muscle, prefrontal, and motor cortex oxygenation profiles during prolonged fatiguing exercise. Oxygen Transport to Tissue XXXV, 789, 149-155.

    Rupp, T., & Perrey, S. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163.

    Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: Implications for fatigue. Journal of Applied Physiology, 104(1), 306-314.

    Shibuya, K. I., Tanaka, J., Kuboyama, N., Murai, S., & Ogaki, T. (2004). Cerebral cortex activity during supramaximal exhaustive exercise. The Journal of Sports Medicine and Physical Fitness, 44(2), 215-219.

    Shibuya, K. I., Tanaka, J., Kuboyama, N., & Ogaki, T. (2004). Cerebral oxygenation during intermittent supramaximal exercise. Respiratory Physiology and Neurobiology, 140(2), 165-172.

    Sijie, T., Hainai, Y., Fengying, Y., & Jianxiong, W. (2012). High intensity interval exercise training in overweight young women. Journal of Sports Medicine and Physical Fitness, 52(3), 255-262.

    Smith, K. J., & Billaut, F. (2010). Influence of cerebral and muscle oxygenation on repeated-sprint ability. European Journal of Applied Physiology, 109(5), 989-999.

    Stutts, W. C. (2002). Physical activity determinants in adults. Perceived benefits, barriers, and self efficacy. AAOHN Journal: Official Journal of The American Association of Occupational Health Nurses, 50(11), 499-507.

    Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177-183.

    Subudhi, A. W., Miramon, B. R., Granger, M. E., & Roach, R. C. (2009). Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. Journal of Applied Physiology, 106(4), 1153-1158.

    Subudhi, A. W., Olin, J. T., Dimmen, A. C., Polaner, D. M., Kayser, B., & Roach, R. C. (2011). Does cerebral oxygen delivery limit incremental exercise performance? Journal of Applied Physiology, 111(6), 1727-1734.

    Trapp, E. G., Chisholm, D. J., Freund, J., & Boutcher, S. H. (2008). The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity (2005), 32(4), 684-691.

    Trilk, J. L., Singhal, A., Bigelman, K. A., & Cureton, K. J. (2011). Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. European Journal of Applied Physiology, 111(8), 1591-1597.

    Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults' participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996-2001.

    Van Lieshout, J. J., Pott, F., Madsen, P. L., van Goudoever, J., & Secher, N. H. (2001). Muscle tensing during standing effects on cerebral tissue oxygenation and cerebral artery blood velocity. Stroke, 32(7), 1546-1551.

    Van Lieshout, J. J., & Secher, N. H. (2008). Point: Sympathetic activity does/does not influence cerebral blood flow. Journal of Applied Physiology, 105(4), 1364-1366.

    Van Lieshout, J. J., Wieling, W., Karemaker, J. M., & Secher, N. H. (2003). Syncope, cerebral perfusion, and oxygenation. Journal of Applied Physiology, 94(3), 833-848.

    Whyte, L. J., Ferguson, C., Wilson, J., Scott, R. A., & Gill, J. M. (2012). Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism, 62(2), 212-219.

    Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10), 1421-1428.

    Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., ... & Inagaki, M. (2014). Neurobehavioral and hemodynamic evaluation of stroop and reverse stroop interference in children with attention-deficit/hyperactivity disorder. Brain and Development, 36(2), 97-106.

    Zhang, R., Zuckerman, J. H., Iwasaki, K., Wilson, T. E., Crandall, C. G., & Levine, B. D. (2002). Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation, 106(14), 1814-1820.

    下載圖示
    QR CODE