Author: |
鄭惠文 Cheng Hui Wen |
---|---|
Thesis Title: |
槲黃素氧化酶活性中心之雙銅擬態化合物的合成、結構及其對3-羥基黃銅醇催化反應之研究 Synthesis and Structure of Dicopper(II) Complex Relevant to the Active Site of Quercetin 2,3-dioxygenase and Its Catalysis towards 3-Hydroxyflavone. |
Advisor: |
李位仁
Lee, Way-Zen |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2009 |
Academic Year: | 97 |
Language: | 中文 |
Number of pages: | 82 |
Keywords (in Chinese): | 槲黃素氧化酶 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 153 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
為了合成槲黃素氧化酶活性中心的擬態化合物,本研究設計了一個對稱性的多牙基配子2,6-bis[(2-di(2-pyridylmethyl)aminoethoxy)]- benzoic acid (BDPABH),並由此配子成功地合成出擬態化合物[Cu2(BDPAB)(CH3CN)(ClO4)](ClO4)2 (1) 及其鋅衍生物[Zn2(BDPAB)- (CH3CN)2](ClO4)3 (2)。兩個錯合物皆利用紅外光光譜和電灑質譜及X-光結構解析法進行鑑定。錯合物1為具有雙銅中心的分子結構,每個銅金屬中心的配位環境皆為扭曲的八面體。兩個銅離子間的距離為5.73 Å。在77 K下偵測錯合物1的電子順磁共振光譜,發現在g‖區域具有七隻分裂的精細結構線,且其平均精細偶合常數為72 G,並推測雙銅之間具有微弱的磁性交互作用。此外,錯合物1在乙腈電解質溶液中由循環伏安法顯示出有兩個擬可逆(quasireversible)的過程,分別為一個電子的氧化還原反應。錯合物1進行3-羥基黃銅醇的氧化斷裂催化反應時,會產生2-(dimethylamino)-2-phenylbenzofuran-3(2H)-one、3-(dimethylamino)-3-phenyl-3H-chromene-2,4-dione、benzoic acid及2-hydroxybenzil四種產物。當催化劑1的劑量提升至10 mol%時,反應24小時後,受質會被消耗完畢,且主要產物為benzoic acid;然而當受質濃度稀釋為1 × 10-4 M時,主要產物會變為3-(dimethylamino)-3-phenyl-3H-chromene-2,4-dione。
In order to mimic the active site of quercetine-2,3-dioxygenase, a symmetric ligand, 2,6-bis[(2-di(2-pyridylmethyl)aminoethoxy)]benzoic
acid (BDPABH), was designed to synthesize a model complex, [Cu2(BDPAB)(CH3CN)(ClO4)](ClO4)2 (1), and a zinc derivative, [Zn2(BDPAB)(CH3CN)2](ClO4)3 (2). Both complexes 1 and 2 were characterized by IR and ESI-MS spectroscopies, and X-ray crystallography. The molecular structure of 1 revealed a dicopper core, in which the two copper centers were separated with a distance of 5.73 Å. Each copper center possessed a distorted octahedral geometry. The EPR spectrum of complex 1 recorded at 77 K has shown seven hyperfine lines in the g‖ region, with an average hyperfine coupling constant of 72 G. A weak magnetic exchange interaction between two copper centers of 1 was proposed. Cyclic voltammetry experiments recorded in CH3CN electrolytic solution of 1 exhibited two successive one-electron electrochemical events, which are quasireversible processes. Complex 1 can catalyze the oxidative cleavage of 3-hydroxyflavone to form 2-(dimethylamino)-2-phenylbenzofuran-3(2H)-one, 3-(dimethylamino)-3- phenyl-3H-chromene-2,4-dione, benzoic acid, and 2-hydroxybenzil. When catalyst 1 was increased to 10 mol%, the substrate was completely consumed within 24 hours, and the major product was benzoic acid. However, 3-(dimethylamino)-3-phenyl-3H-chromene-2,4-dione would become the major product as the concentration of the substrate was decreased to 1.4 × 10-4 M.
1. Westlake, D. W. S.; Talbot, G.; Blakley, E. R.; Simpson, F. J. Can. J. Microbiol. 1959, 5, 621.
2. Mamma, D.; Diomi, M.; Kalogeris, E.; Hatzinikolaou, A.; Kekos, D. G.; Lekanidou, D.; Macris, B. J.; Christakopoulos. P. Food Biotech. 2004, 18, 1.
3. Krishnamurty, H. G.; Simpson, F. J. J. Biol. Chem. 1970, 245, 1467.
4. Tranchimand, S.; Tron T.; Gaudin, C.; Iacazio, G. FEMS Microbiology Letters. 2005, 253, 289.
5. Hund, H. K.; Breuer, J.; Lingens, F.; Hüttermann, J.; Kappl R.; Fetzner, S. Eur. J. Biochem. 1999, 263, 871.
6. Fusetti, F.; Schröter, K. H.; Steiner, R. A.; van Noort, P. I.; Pijning, T.; Rozeboom, H. J.; Kalk, K. H.; Egmond, M. R.; Dijkstra, B. W. Structure. 2002, 10, 259.
7. Kooter, I. M.; Steiner, R. A.; Dijkstra, B. W.; van Noort, P. I.; Egmond, M. R.; Huber, M. Eur. J. Biochem. 2002, 269, 2971.
8. (a) Steiner, R. A.; Kalk, K. H.; Dijkstra, B. W. Proc. Natl. Acad. Sci. 2002, 99, 16625. (b) Roberto, A. S.; Kooter, I. M.; Dijkstra, B. W. Biochemistry. 2002, 41, 7955.
9. Balogh-Hergovich, E.; Kaizer, J.; Speier, G. Inorg. Chim. Acta. 1997, 256, 9.
10. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Fulop, V.; Parkanyi, L.
Inorg. Chem. 1999, 38, 3787.
11. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Huttner, G; Zsolnai, L.;
Pap, J. Eur. J. Inorg. Chem. 2002, 2287.
12. Lippai, I.; Speier, G.; Huttner, G.; Zsolnai, L. Chem. Commun. 1997, 741.
13. Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047.
14. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Huttner, G. J. Mol. Catal. A: Chem. 2003, 206, 87.
15. Malkhasian, A. Y. S.; Finch, M. E.; Nikolovski, B.; Menon, A.; Kucera, B. E.; Chavez, F. A. Inorg. Chem. 2007, 46, 2950.
16. Purcell, K. F.; kotz, J. C.; Saunders, W. B. Inorganic Chemistry. 1977.
17. Wang, S. L.; Wang, P. C.; Nieh, Y. P. J. Appl. Cryst. 1990, 23, 520.
18. Cornilsen, B.; Nakamoto, K. J. Inorg. Nucl. Chem., 1974, 36, 2467.
19. Saito, Y.; Takemoto, J.; Hutchinson, B.; Nakamoto, K. Inorg. Chem.,
1970, 11, 2003.
20.曾煥升,國立台灣師範大學化學研究所博士論文,2008.
21. Hathway, B. J.; Underhill, A. B. J. Chem. Soc. 1961, 3091.
22. Torelli, S.; Belle, C.; Gautier-Luneau, I.; Pierre, J. L. Inorg. Chem.
2000, 39, 3526.
23. Mandal, S. K.; Thompson, L. K.; Newlands, M. J.; Gabe, E. J.; Lee, F.
L.Inorg. Chem., 1990, 29, 3556.
24. 江建緯,國立台灣師範大學化學研究所碩士論文,2008.
25. Murthy, N. N.; Telser, J.; Zakharov, L. N.; Yap, G. A.; Li, L.; Rheingold, A. L.; Karlin, K. D.; Rokita, S. E. Inorg. Chem. 2006, 45, 7144