簡易檢索 / 詳目顯示

研究生: 王文宏
Wun-Hong Wang
論文名稱: 在高中階段教導學生運用對稱觀念思考物理現象之可行性探討-以光學為例
A Teaching Experiment on the Feasibility of Enabling Senior High School Students to Apply Symmetrical Reasoning to Comprehend Physical Phenomena: Using the Unit of Optics as an Example
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 180
中文關鍵詞: 對稱對稱性思維光學
英文關鍵詞: symmetry, symmetrical reasoning, optics
論文種類: 學術論文
相關次數: 點閱:162下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究的主要目的是開發一套運用「對稱性思維」理解物理現象的學習方法。在前實驗研究設計架構之下,以小規模教學實驗的方式進行高中生光學單元的教學研究。本研究採取立意取樣方式挑選6位宜蘭縣某校的高一學生參加。並初步嘗試以對稱性的觀點來呈現光學教材。主要以引領學生透過掌握對稱性質來思考物理問題和鼓勵他們多利用對稱性思維的方式來進行這12節課的教學。透過前後測的對照來評估此方法的可行性和學生對此創意課程的接受情況。資料分析參照多方資料進行詮釋,例如透過影像紀錄、建構反應式試題、結合選擇題和開放式問答的態度問卷以及個別訪談。並配合量化資料分析作混合方法的研究。
      此創意課程的主要特色就是盡可能凸顯高一光學單元內容中的對稱性。研究的基本假設是認為學生能理解物理學中對稱性的意涵。然後,整個課程就強調使用對稱性思惟來學習科學。教材的內容依序是對稱性的介紹、光的直進性、面鏡成像、透鏡成像、光的本質。並透過教學和探究實驗活動讓學生瞭解其中對稱性,像是光徑的可逆性、視差法、凸透鏡成像的共軛、透鏡與面鏡成像差異其背後的規律性、…等。有兩個主要的紙筆式研究工具。第一個是光學概念評量試題,目的用來評量學生在教學前後對於光學概念的瞭解情形。第二個是課後問卷,用來調查學生對於此實驗教學的感受,以及蒐集這群學生對於課程的意見。
      研究結果發現,6位學生中經過本實驗教學,雖然成績進步幅度在統計上未達顯著,但是這可能是由樣本數太少,導致t考驗的統計考驗力不足之故,因此宜同時估計此前後測設計的效果量約為.40,屬於接近中等程度的效果量。根據質性資料的分析結果,的確反映出學生普遍能夠建立起正確的光學概念。此外,部分學生經過本實驗教學能夠思考物理現象背後的對稱性,甚至能夠利用對稱性思維來思考。多數學生認為本實驗教學能提供機會讓他們學會欣賞自然現象背後的規律性、對稱性。本研究之發現確實反映出藉由對稱性來學習光學是一個可行的方式。建議未來能夠以大樣本的研究設計來進行驗證。總之,將此類設計應用在其他物理主題的學習似乎頗富願景。

    The main purpose of this study was to investigate ways to help students apply “symmetrical reasoning” to comprehend physical phenomena as a way of learning science. This is done by way of a small-scaled teaching experiment under the pre-experimental design on the unit of optics for senior high school students. Six tenth graders from the Yilan County were selected to participate in the study by means of purposive sampling. Teaching materials were first prepared by representing optics from the perspectives of symmetry. Six classes of instruction were conducted by emphasizing students to think of physics problems from the viewpoint of symmetry and encouraged them to apply symmetrical reasoning more frequently. The feasibility of this approach was estimated based on a pretest and a posttest as well as on the participants’ acceptance of the innovative program. Data analysis were mainly done in accordance to the interpretive paradigm on various data sources, including video recording, multiple choices items and constructed responses items, attitudinal questionnaires with both multiple choices and open-ended items, and personal interviews. A mixed research approach was attempted whenever quantitative data analysis could be done.
    The main feature about the experimental material is that most of the optics material was introduced from the angle of symmetry. The basic assumption of this study is that students can understand the implications for symmetry in the physical sciences. Accordingly, the instruction was delivered by emphasizing the use of symmetrical reasoning in learning sciences. The order of material introduced included an introduction about symmetry, rectilinear propagation of light, mirror imaging, lens imaging and the nature of light. The lectures were embedded with inquiry-based experiments. The purpose of these activities was to lead students to recognize the presence of symmetry behind various physical phenomena. It can be identified in the reversibility of light, mirror imaging, parallax, conjugate imaging of convergent lens, as well as in the ordering between lens. There were two main paper and pencil research tools. The first one was the optical concept assessment instrument that examined students’ knowledge about optics before and after the instruction. The second one was the course questionnaire that surveyed students’ opinions about the experimental program.
    It was found that students who took the experimental course did not demonstrate significantly greater improvement than those who did not participate in the course. This finding can partly be attributed to the low statistical power of paired t-test due to small sample size. Effect size of paired design was hence computed for further information. It was found that the effect size was about .40 which, according to Cohen, can be treated as of medium effect. Results from qualitative data analysis further reflected that the participating students mostly had correct conceptions about optics. Furthermore, some students who took the experimental course could comprehend the symmetry behind physical phenomena and could even apply symmetrical reasoning within the context of the experimental optics materials. Most participants expressed that the course provide them a chance to appreciate the order (i.e., regularity, simplicity and symmetry) behind the nature. The research findings provided evidences that learning optics by way of symmetry is a feasible approach and that a further study with a larger sample size is called for to verify the results reported herein. In sum, extension of this approach to other areas of physics looks very promising.

    第壹章 緒論……………………………………………………… 1  第一節 研究背景與動機……………………………………… 1  第二節 研究目的與問題……………………………………… 6  第三節 名詞解釋……………………………………………… 8  第四節 研究貢獻……………………………………………… 10  第五節 研究範圍與限制……………………………………… 10 第貳章 文獻探討………………………………………………… 11  第一節 對稱性思維…………………………………………… 11  第二節 對稱在物理問題中的應用…………………………… 20  第三節 光學相關的迷思概念………………………………… 26  第四節 探究式教學模式……………………………………… 33  第五節 運用對稱學習科學之相關研究……………………… 36 第參章 研究方法………………………………………………… 40  第一節 研究設計……………………………………………… 40  第二節 研究對象……………………………………………… 41  第三節 研究工具與資源……………………………………… 43  第四節 研究步驟與流程……………………………………… 69  第五節 資料分析……………………………………………… 70 第肆章 資料分析與結果………………………………………… 72  第一節 實驗課程教學情形及學生對於此課程之接受程度… 72  第二節 六位參與小規模教學實驗學生的表現……………… 105  第三節 學生對於物理現象背後的對稱性瞭解情形………… 115 第伍章 討論、結論與建議……………………………………… 122  第一節 討論…………………………………………………… 122  第二節 結論…………………………………………………… 125  第三節 建議…………………………………………………… 126 參考文獻……………………………………………………………127 附錄…………………………………………………………………133  附錄A-1 實驗課程學生報名表…………………………………133  附錄B-1 實驗課程的學習單……………………………………134  附錄C-1 學生基本資料調查問卷………………………………162  附錄C-2 學生光學概念評量試題………………………………164  附錄C-3 課後問卷………………………………………………172  附錄C-4 光學概念評量之評分標準……………………………175

    中文部分
    王溢然、王明秋(2001)。對稱。新竹市:凡異。
    北京大學出版社(譯)(2003)。近代物理科學的形而上學基礎。(原作者:E. Burtt)。北京:北京大學出版社。
    古智雄(1992)。凸透鏡成像迷思概念的詮釋系統研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    李玉貞(1999)。光學史融入教學對高中學生科學本質觀及光概念的改變之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
    林哲正(2007)。以探究教學法改進國中生光學迷思概念與學習成效之研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
    邱韻如(1998)。成像概念的成長與學習(未出版之博士論文)。國立臺灣師範大學,臺北市。
    波利亞(2006)。How To Solve It怎樣解題。臺北市:天下遠見。
    張禮(譯)(2006)。可畏的對稱:現代物理美的探索。(原作者:徐一鴻)。臺北市:五南。(原著出版年:1986)
    孫宗揚(2009)。物理學中的對稱性。合肥:中國科學技術大學出版社。
    陳忠志、許有亮(1998)。國中生平面鏡成像的另有架構之探討。物理教育,1,1-14。
    陳芊蓉、吳程遠(譯)(1996)。物理之美:費曼與你談物理。(原作者:R. P. Feynman)。臺北市:天下遠見。(原著出版年:1965)
    馮承天、陸繼宗(譯)(2005)。對稱。(原作者:H. Weyl)。上海:上海科技教育出版社。(原著出版年:1952)
    西文部分
    Anzai, Y., & Yokoyama, T. (1984). Internal models in physics problem solving. Cognition and Instruction,1(4),397-450.
    Chalmers, A. F. (1970). Curie’s principle. British Journal for the Philosophy of Science, 21, 133–148.
    Chang, H. P., Chen, J. Y., Guo, C. J., Chen, C. C., Chang, C. Y., Lin, S. H., ...Tseng, Y. T. (2007). Investigating primary and secondary students’ learning of physics concepts in Taiwan. International Journal of Science Education, 29(4), 465-482.
    Cole, K. C. (1999). First you build a cloud : And other reflections on physics as a way of life. San Diego, CA: Harcourt Brace.
    Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, NY: Routledge.
    Darvas, G. (2011). What is symmetry? [Web Article]. Retrieved from http://www.symmetry.hu/definition.html
    Daniels, H. (2008). Vygotsky and Research [DX Reader version]. Retrieved from http://taebc.etailer.dpsl.net/home/html/moreinfo.asp?isbn=0203891791
    Dvořák, L. (2011). A do-it-yourself optical bench. Physics Teacher, 49(7), 452-455. doi:10.1119/1.3639160
    Feynman, R. P., Leighton, R. B., & Sands, M. L. (1963). The Feynman lectures on physics. Redwood, CA: Addison-Wesley.
    Galili, I., & Hazan, A. (2000). Learners' knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.
    Hayes, J. R. (1981). The complete problem solver. Philadelphia, PA: Franklin Institute Press.
    Helfgott, H., & Helfgott, M. (2002). A noncaculus proof that Fermat’s principle of least time implies the law of refraction. American Journal of Physics, 70 (12), 1224-1225. doi:10.1119/1.1514235
    Hewitt, P. (2011). Corner refractor. Physics Teacher, 49(5), 262. doi:10.1119/1.3578412
    Higbie, J. (1980). The lever law from a symmetry consideration. Physics Teacher, 18(5), 367-367.
    Hill, C. T., & Lederman, L. M. (2000). Teaching symmetry in the introductory physics curriculum. Physics Teacher, 38(6), 348-353.
    Hodson, D. (2008). Towards scientific literacy. A teachers’ guide to the history, philosophy and sociology of science. Rotterdam, Netherlands: Sense.
    Howell, D. C. (2007). Statistical methods for psychology [Seventh Edition]. Belmont, CA: Cengage Wadsworth.
    Leikin, R., Berman, A., & Zaslavsky, O. (2000). Applications of symmetry to problem solving. International Journal of Mathematical Education in Science and Technology, 31(6), 799-809.
    Maloney, D. P. (1993). Research on problem solving: Physics. New York, NY: MacMillan Publishing Co.
    Middleton, D. (2004). Concepts, learning and the constitution of objects and events in discursive practice. In A.-N. Perret-Clermont, C. Pontecorvo, L. B. Resnick, T. Zittoun, & B. Burge (Eds.), Joining society: Social interaction in adolescence and youth (pp. 204–215). Cambridge, England: Cambridge University Press.
    Osborne, R.J., & Black, P. (1993). Young children’s (7-11) ideas about light and their development. International Journal of Science Education, 15(1), 83-93.
    Rice, K., & Feher, E. (1987). Pinholes and images: Children’s conception of light and vision.Ⅰ. Science Education, 71(4), 629-639.
    Rice, K., & Feher, E. (1988). Shadows and anti-images: Children’s conception of light and vision.Ⅱ. Science Education, 72(5), 637-649.
    Rosen, J. (2008). Symmetry rules: How science and nature are founded on symmetry. Rockville, MD: Springer. doi:10.1007/978-3-540-75973-7
    Savelsbergh, E. R., Jong de, T., & Ferguson-Hessler, M. G. M. (2002). Situational knowledge in physics: The case of electrodynamics. Journal of Research in Science Teaching, 39 (10), 928-952.
    Saxena, A. B. (1991). The understanding of the properties of light by students in India. International Journal of Science Education, 13(3), 283-289.
    Schwab, J. J (1962).The teaching of science as enquiry. In J. J. Schwab, & P. F. Brand (Eds.), The teaching of science. Cambridge, MA: Harvard.
    Selly, N. F. (1996). Children’s ideas on light and vision. International Journal of Science Education, 18(6), 713-723.
    Settlage, J. (1995). Children’s conception of light in the context of a technology-based curriculum. Science Education, 79(5), 535-553.
    Shapiro, B. L. (1989). What children bring to light: Giving high status to learners’ views and action in science. Science Education, 73, 711-733.
    Sobel, M. I. (2002). Time-reversal invariance in a course for liberal arts students. Physics Teacher, 40(5), 290-293. doi:10.1119/1.1516384
    Tuan, H. L., Chang, H. P., & Wang, K. H. (2000).The development of an instrument for assessing students’ perceptions of teachers’ knowledge. International Journal of Science Education, 22(4), 385-398.
    Van Domelen, D. (2012). Binder clip optics bench for Young's double-slit experiment. Physics Teacher, 50(2), 116-117. doi:10.1119/1.3677290
    Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press.

    下載圖示
    QR CODE