簡易檢索 / 詳目顯示

研究生: 張政凱
論文名稱: 不同溶劑對製備高分子-單壁奈米碳管複合物之性質分析
Analysis for the properties of Polymer/SWCNT composite prepared by different solvents
指導教授: 陳貴賢
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 單壁奈米碳管
論文種類: 學術論文
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討單壁奈米碳管與共軛高分子複合材料於不同溶劑下之光學分析。實驗選用共軛高分子作為介面活性劑,不僅可以將聚集的單壁奈米碳管分散,而且還對於單壁奈米碳管的構型或特性有選擇性;不同溶劑的極性、密度與構形,對於共軛高分子與單壁奈米碳管的溶解度、選擇性與分散性都具有影響力。實驗將單壁奈米碳管使用共軛高分子分散於溶劑中,利用吸收光譜分析樣品的溶解度;光激發螢光光譜分析單壁奈米碳管的分散性與選擇性。研究顯示特定的高分子與有機溶劑組合,可以對於特定構型的單壁奈米碳管具有選擇性。在光電元件的部分,此實驗利用P3HT分散單壁奈米碳管於不同溶劑中,討論不同溶劑對於P3HT與單壁奈米碳管之間結晶性的影響,因此可以更瞭解P3HT與單壁奈米碳管的系統。

    Optical analyses for the interaction between single-walled carbon nanotubes(SWCNTs) and conjugate polymer under different solvents had been discussed in this thesis. It was shown that SWCNTs not only can be dispersed in solvent using conjugate polymer as surfactant agent, but also shows good selectivity for chirality and properties. The solvents with different polarity, density and structure will affect the solubility, selectivity and dispersion of SWCNTs/polymer system. The solubility of SWCNTs in solvents was analyzed by absorption spectra. The dispersion and selectivity of SWCNTs with different conjugate polymer were analyzed by photoluminescence. The result shows that some specific chirality of SWCNTs can be separated by certain conjugate polymer and organic solvents. In this thesis, dispersed SWCNTs in different solvents using P3HT were used for photovoltaic device measurement. In order to have better understanding about the interaction between P3HT and SWCNTs, the solvent effect on the crystallization of the P3HT and the SWCNTs/P3HT composites was discussed.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 奈米碳管的發展歷史 1 1-2 奈米碳管製程 4 1-2-1 電弧放電法 4 1-2-2 雷射蒸發法 5 1-2-3 觸煤熱裂解法 6 1-3 奈米碳管之應用與未來發展願景 7 第二章 原理介紹 8 2-1 單壁奈米碳管介紹 8 2-1-1 奈米碳管之晶格結構 8 2-1-2 奈米碳管的電子結構 12 2-2 共軛高分子之介紹 18 2-2-1 共軛高分子的特性 18 2-2-2 單壁奈米碳管與共軛高分子之相互關係 19 2-3 溶劑效應 20 2-4 分離與分散單壁奈米碳管方法 21 2-5 研究動機 24 第三章 實驗儀器與方法 25 3-1 實驗藥品 25 3-1-1 溶劑(Solvent) 25 3-1-2 發光有機高分子(Light-emitting organic polymers) 26 3-1-3 單壁奈米碳管(Single-Walled Carbon Nanotubes) 27 3-2 製程儀器 28 3-2-1 超音波震盪器(Sonicator) 28 3-2-2 觸控式超音波細胞破碎機(Digital Sonicator) 29 3-2-3 高速冷凍離心機( Centrifugration) 30 3-2-4手套箱(Glove Box) 31 3-3 分析儀器 32 3-3-1 UV/VIS/NIR分光光譜儀(Spectrophotometer) 32 3-3-2光激發螢光光譜儀 (Photoluminescence, PL) 34 3-3-3拉曼光譜分析儀 (Raman Spectroscopy) 36 3-3-4 原子力顯微鏡(Atomic Force Microscopy) 38 3-4 實驗方法 39 3-4-1 實驗流程 39 3-4-2 實驗步驟 40 第四章 結果與討論 42 4-1 共軛高分子與單壁奈米碳管於溶劑之簡介 42 4-2 超音波細胞破碎機對於單壁奈米碳管溶解度之分析 43 4-3 介面活性劑與單壁奈米碳管分散之分析 45 4-3-1 共軛高分子包覆單壁奈米碳管特性之分析 45 4-3-2 相似共軛高分子與單壁奈米碳管作用力之分析 48 4-4 溶劑對於單壁奈米碳管之影響 51 4-4-1 溶劑選擇之分類 51 4-4-2 溶劑結構之影響 52 4-4-3 溶劑偶極距之影響 56 4-4-4 溶劑密度之影響 58 4-5溶劑溶解度與分散性之影響 59 4-6 P3HT於不同溶劑下對於單壁奈米碳管之影響 73 第五章 結論與未來展望 82 Reference 84 附錄 87

    1. T. W. Ebbesen, Carbon Nanotubes-Preparation and Properties, CRC press, 1997
    2. S. Iijima, Nature, 1991, 354, 56
    3. D. S. Bethune, C. H. Kiang, Nature, 1993, 363, 605
    4. S. Iijima, T. Ichihashi, Nature, 1993, 363, 603
    5. P. M. Ajayan, T. W. Ebbesen, Nature, 1992, 220
    6. Y. Saito and M. Inagaki, Jpn. J. Appl. Phys. 1993, 954
    7. P. M. Ajayan, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Nature, 1994, 519
    8. P. M. Ajayan, J. M. Lambert, P. Bernier, J. M. Planeix, V. Brotons, B.Coq, and J. Castaing, Chem. Phys. Lett., 1994, 364
    9. A. Govindaraj, C. N. R. Rao, R. Sen, Chem. Phys. Lett., 1997, 276
    10. I.W. Chiang, B.E. Brinson, A.Y. Huang, J. Phys. Chem. B, 105, 2001,8297
    11. F. Li, H.M. Cheng, G. Su, H.Y. Pan, L.L. He, X. Sun, S. Dresselhaus, Appl. Phys. Lett., 1998, 3282
    12. 黃建良, 奈米科技專刊, 2002, 51
    13. J. H. Hafner, A.G. Rinzer, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science, 1995, 1550
    14. A. C. Dillon, K. M. Jones, Nature, 1997, 386, 377
    15. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science, 1995, 269, 1550
    16. Walt A. de Heer, A. Chatelain, D. Ugarte, Science, 1995, 270, 1179
    17. M. S. Dresselhaus et al. Adv. Phys., 2000, 49, 705
    18. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes ,1998, (London:Imperial College Press)
    19. M. S. Dresselhaus, G. Dresselhaus, R. Satio, and A. Jorio, Phys. Rep., 2005, 409, 47
    20. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys., 1993, 73, 494
    21. S. Reich, J. Maultzsch, C. Thomsen, Phys. Rev. B, 2002, 66, 35412
    22. J. Kürti, V. Zólyomi, M. Kertesz, G. Sun, New J. Phys., 2003, 5, 125
    23. S. Reich, C. Thomsen, Phys. Rev. B, 2002, 65, 155411
    24. J. W. Ding, X. H. Yan, J. X. Cao, Phys. Rev. B, 2002, 66, 73401
    25. S. M. Bachilo ; M.S. Strano ; C. Kittrell ; R.H. Hauge ; R.E. Smalley ; R.B. Weisman, Science, 2002, 298, 2361
    26. H. Kataura; Y. Kumazawa; Y. Maniwa; I. Umezu; S. Suzuki; Y. Ohtsuka; Y. Achiba, Synthetic. Met. 1999, 103, 2555
    27. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B, 2000, 61, 2981
    28. R. B. Weisman, S. M. Bachilo, Nano Lett. 2003, 3, 1235
    29. J. Zhao, Appl. Phys. Lett. 2003, 21, 3746
    30. S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, K. Kaneko, Nano Lett. 2007, 7, 583
    31. R. J. Sundberg, F. A. Carey, Advanced Organic Chemistry Part A: Structure and Mechanisms
    32. M. Zheng and E. D. Semke, J. Am. Chem. Soc., 2007, 129, 6084
    33. J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, J. M. Tour, Chem. Commun., 2001, 193
    34. J. Y. Hwang, A. Nish, J. Doig, S. Douven, C. W. Chen, L. C. Chen, R. J. Nicholas, J. Am. Chem. Soc., 2008, 3543
    35. K. Utsugi, S. Takano, J. Electrochem. Soc., 1992, 139, 3610
    36. M. Zheng, A. Jagota, E. D. Semke, B A. Diner, R. S. Mclean,S. R. Lustig, R. E. Richardson, N. G. Tassi, Nature Mater., 20032, 338
    37. Traiphol,R., Sanguansat, P, Srikhirin, T. Osotchan, Macromolecules 2006, 39, 1165
    38. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nature Nanotech., 2006, 1, 60
    39. H. Huang, H. Kajiura, R. Maruyama, K. Kadono, K. Noda, J. Phys. Chem. B, 2006, 110, 4686
    40. D. S. Kim, D. Nepal, K. E. Geckeler, Small, 2005, 1, 1117
    41. H. M. Pickett, J. Am. Chem. Soc., 1979, 92, 7281
    42. G. Gao, T. Çagin, W. A. Goddard, Nanotechnology, 1998, 9, 184
    43. X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, nature nanotechnology, 2007, 2, 361
    44. R. Traiphol, P. Sanguansat, T. Srikhirin, T. Kerdcharoen, T.Osotchan, Macromolecules, 2006, 39, 1165
    45. T. Huser, M. Yan, L. J. Rothberg, Proc. Natl. Acad. Sci., 2000, 97, 11187
    46. B. J. Schwartz, Annu. ReV. Phys. Chem., 2003, 54, 141.
    47. S. Quan, F. Teng, Z. Xu, L.Qian, Y.Hou, Y. Wang, X. Xu, Eur. Polym. J., 2006, 42, 228.
    48. G. Liu, S. Johnson, J. B. Kerr, Mater. Res. Soc. Symp. Proc. 2004, V6.8.1, 796,
    49. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Strupp, M. C. Hersam, Nat. Nanotechnol., 2006, 1, 60.
    50. J. Geng, B. S. Kong, S. B. Yang, S. C. Youn, S. Park, T. Joo, and H. T. Jung, Adv. Funct. Mater., 2008, 18
    51. J. Geng and T. Zeng, J. Am. Chem. Soc., 2006, 128, 16827
    52. M. Lewin, Y. Tang, Macromolecules, 2008, 41, 13
    53. M. Sundberg, O. Inganäs, S. Stafström, G. Gustafsson, B. Sjögren, solid state commun., 1989, 71, 435
    54. 來俊帆, Study of growth mechanism of CNTs by thermal CVD, 2004
    55. J. Y. Hwang, Surface Interactions in Nano-Carbon Hybrid Matericals, 2008

    無法下載圖示 本全文未授權公開
    QR CODE