簡易檢索 / 詳目顯示

研究生: 陳詠謙
Yung-Chien Chen
論文名稱: 微波陶瓷材料xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3(x=0, 0.25, 0.5, 0.75, 1)與Re3Ga5O12 (Re=Nd, Sm, Eu, Dy)之兆赫光譜研究
Terahertz Characterization of xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3 (x=0, 0.25, 0.5, 0.75, 1) and Re3Ga5O12 (Re=Nd, Sm, Eu, Dy) Microwave Ceramics
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 微波陶瓷兆赫光譜
英文關鍵詞: Terahertz, garnet
論文種類: 學術論文
相關次數: 點閱:427下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用大孔徑光導天線激發兆赫波,並用自由空間電光取樣方法偵測兆赫波的時域訊號。我們分別對鎵石榴石陶瓷(Re3Ga5O12)與複合式鈣鈦礦陶瓷(xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3)的介電特性進行研究;其中鎵石榴石陶瓷之A-site元素由不同的稀土族元素(Re = Nd、Sm、Eu、Dy)所置換,而複合式鈣鈦礦陶瓷之x代表錫原子的濃度(x = 0.00、0.25、0.50、0.75、1.00)。這兩組樣品之前都測過微波的拉曼散射光譜(Raman)及紅外光譜(Infrared),但分析後微波的介電損失都比紅外光譜的線性外插結果來的高一些,初步推測是樣品在製備過程中,晶粒與晶粒之間有一些孔洞、結構非有序或二次相產生,而造成樣品的非本質損失(Extrinsic loss)。因此我們利用兆赫波來測量樣品在0.1 ~ 1.0 THz範圍內的介電損失,發現兩組樣品在兆赫波段的數據都沒有吻合紅外光譜線性外插曲線的值,即驗證了這兩系列樣品在製備過程中或許都有一些孔洞、結構非有序或二次相而造成非本質損失的特性。

    Coherent THz time domain spectroscopy was used to measure the dielectric proper-ties of Re3Ga5O12 (Re = Nd、Sm、Eu、Dy) garnet ceramics and xLa(Mg1/2Sn1/2)O3 - (1-x)La(Mg1/2Ti1/2)O3 (x = 0.00、0.25、0.50、0.75、1.00, in which x represents different concentration of Sn atoms) perovskite ceramics. The large-aperture photoconductive antenna was used to generate terahertz (THz) waves, then using the free-space elec-tro-optic sampling method to detect THz wave signals. Both Re3Ga5O12 garnet and xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3 perovskite ceramics have been characterized by Raman and Infrared (IR) reflectivity spectroscopy before, however, the dielectric loss at microwave range is slightly higher than that predicted by the IR measurement. It is preliminarily induced that the extrinsic losses of samples in the process of sample preparation were caused by porosity, disorders and secondary phase generation at grain boundary of crystal grains. Therefore, we used THz spectrum to obtain the measured dielectric losses of both aforementioned ceramics in the range of 0.1-1.0 THz, and we found that the dielectric losses of both samples at THz spectrum also did not match the prediction made by IR spectroscopy. As a conclusion, these two series ceramic samples have the extrinsic losses that predominantly come from the porosity, disorders and secondary phase at grain boundary of crystal grains during sample mak-ing process.

    致謝 I 中文摘要 III Abstract IV 總目錄 V 圖目錄 VII 表格目錄 X Chapter 1 緒論 1 1.1 兆赫波的應用 1 1.2 微波通訊材料之性質 3 1.3 樣品性質檢測 6 1.4 參考資料 7 Chapter 2 理論分析與實驗裝置 8 2.1 實驗整體架構 8 2.1.1 理論公式推導 9 2.1.2 快速傅立葉轉換 12 2.2 實驗系統架構 13 2.3 系統元件與原理 15 2.3.1 二極體激發連續波雷射 15 2.3.2 鎖模鈦藍寶石雷射 16 2.3.3 法拉第旋轉器 17 2.3.4 二分之ㄧ波長的相位延遲波板 17 2.3.5 極化分光鏡 19 2.3.6 步進馬達 19 2.3.7 消色差透鏡 20 2.3.8 減光鏡 21 2.3.9 光學斷波器 21 2.3.10 物鏡 22 2.3.11 大孔徑光導天線 22 2.3.12 矽半球面鏡 30 2.3.13 離軸拋物面反射鏡 31 2.3.14 薄膜分光鏡 32 2.3.15 非線性電光晶體 32 2.3.16 四分之ㄧ波長的相位延遲波板 35 2.3.17 渥拉斯頓稜鏡 36 2.3.18 平衡偵測器 36 2.3.19 電流前置放大器 36 2.3.20 直流電源供應器 36 2.3.21 鎖相放大器 37 2.4 實驗操作步驟 39 2.5 參考資料 41 Chapter 3 樣品介紹 43 3.1 複合式鈣鈦礦陶瓷 43 3.2 鎵石榴石陶瓷 44 3.3 參考資料 46 Chapter 4 實驗結果與分析 47 4.1 鎵石榴石陶瓷 47 4.1.1 時域訊號 47 4.1.2 頻域訊號 48 4.1.3 折射率 50 4.1.4 介電常數 51 4.1.5 品質因子與吸收係數 51 4.1.6 MW–THz–IR整合 54 4.2 複合式鈣鈦礦陶瓷 57 4.2.1 時域訊號 57 4.2.2 頻域訊號 58 4.2.3 折射率 59 4.2.4 介電常數 60 4.2.5 品質因子和吸收係數 61 4.2.6 MW–THz–IR整合 63 4.3 參考資料 66 Chapter 5 結論 67 附錄 68 參考資料 75

    Chapter 1
    [1] K. Humphreys, J. P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A. Murphy, C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” Proc. EMBC, vol. 1, pp. 1302-1305 (2004)
    [2] M. Walther, “Modern spectroscopy on biological molecules: Structure and bonding investigated by THz time-domain spectroscopy and transient phase gat-ing spectroscopy,” PhD. Thesis, University of Freiburg (2003)
    [3] C. Zandonella, “T-ray specs,” Nature vol. 424, pp. 721-722 (2003)
    [4] J. R. Pardo, J. Cernicharo, E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/sub-millimeter applications,” IEEE Trans. On Antennas and Propagation, vol. 49, no. 12, pp. 1683-1694 (2001)
    [5] M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, P. H. Siegel, “A 2.5-THz receiver front end for space borne application,” IEEE Trans. On Mi-crowave Theory and Techniques, vol. 48, no. 4, pp. 733-739 (2000)
    [6] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., vol. 10, pp. 391-398 (1939)
    [7] Hiroshi Tamura, “Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure,” Jpn. J. Appl. Phys., vol. 25, pp. 787 (1986)
    [8] I. G. Siny, R. S. Katiyar, “Cation arrangement in the complex perovskites and vibrational spectra,” J. Raman Spectroscopy, vol. 29, pp. 385-390 (1998)
    [9] G. Lucazeau, L. Avello, “Raman spectroscopy in solid state physics and material science,” Theory Techniques and applications, vol. 23, pp. 301 (1995)
    [10] E. Nyfors, “Cylindrical microwave resonator Sensors for measuring materials under flow,” PhD. Thesis, Department of Electrical and Communications Engi-neering, Helsinki University of Technology, Finland, (2000)
    [11] J. Petzelt, S. Kamba, “Submillimetre and infrared response of microwave mate-rials: extrapolation to microwave properties,” Materials Chemistry and Physics, vol. 79, pp. 175-180 (2003)
    [12] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, J. Petzelt, I. M. Reaney, P. L. Wise, “Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Rud-dlesden-Popper Homologous series,” J. Eur. Ceram. Soc., vol. 23, pp. 2639-2645 (2003)
    [13] S. Kamba, D. Noujni, A. Pashkin, J. Petzelt, R. C. Pullar, A. -K. Axelsson, N. Mcn Alford, “Low-temperature microwave and THz dielectric response in novel microwave ceramics,” J. Eur. Ceram. Soc., vol. 26, pp. 1845-1851 (2006)

    Chapter 2
    [1] T. R. Tsai, M. H. Liang, C. T. Hu, C. C. Chi, I. N. Lin, “Terahertz Response of Bulk Ba(Mg1/3Ta2/3)O3,” Jpn. J. Appl. Phys. vol. 39, pp. 5642-5644 (2000)
    [2] T. R. Tsai, M. H. Liang, C. T. Hu, C. C. Chi, I. N. Lin, “Terahertz spectroscopic technique for characterizing the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 materials,” J. Eur. Ceram. Soc. vol. 21, pp. 2787-2790 (2001)
    [3] Frank L. Pedrotti S. J. Leno S. Pedrotti, “Introduction to optics,” 2nd edition, pp. 306-309
    [4] David J. Griffiths, “Introduction to Electrodynamics,” 3rd edition, pp. 375-379
    [5] Steven W. Smith, Ph.D., “The Scientist and Engineer's Guide to Digital Signal Processing,” Chapter 12, pp. 225-230
    [6] 黃升龍, 鄭木海, “小型固態雷射之研發,” 科學發展月刊, 第11期, 第28卷, pp. 836-842
    [7] Frank L. Pedrotti S. J. Leno S. Pedrotti, “Introduction to optics,” 2nd edition, pp. 553-555
    [8] Frank L. Pedrotti S. J. Leno S. Pedrotti, “Introduction to optics,” 2nd edition, pp. 288-295, pp. 225-230
    [9] D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond Photoconducting Hertzian Dipoles,” Appl. Phys. Lett., vol. 45, pp. 584 (1984)
    [10] P. R. Smith, D. H. Auston, M. C. Nuss, “Subpicosecond Photoconducting Dipole Antenna,” IEEE J. Quantum Electronics, vol. 24, pp. 255 (1988)
    [11] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femto-second electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. vol. 56, pp. 1011 (1990)
    [12] 作者:Donald A. Neamen, 譯者:李世鴻, “Semiconductor Physics & Devices,” 3rd edition, pp. 526-533
    [13] L. Xu, X. C. Zhang, D. H. Auston, “Terahertz radiation from large aperture Si p-i-n diodes,” Appl. Phys. Lett. vol. 59, pp. 3357 (1991)
    [14] 張良森, “Studies of the Saturation Mechanism in Terahertz Radiation,” 國立成功大學物理研究所碩士論文(2006)
    [15] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Op-tical Rectification at Semiconductor Surfaces,” Phys. Rev. Lett., vol. 68, pp. 102 (1992)
    [16] M. Tani, S. Matsuura, K. Sakai, S. I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt., vol. 36, pp. 7853 (1997)

    [17] J. T. Darrow, X. C. Zhang, D. H. Auston, J. D. Morse, “Saturation Properties of Larg-Aperture Photoconducting Antennas,” IEEE J. Quantum Electronics, vol. 28, pp. 1607 (1992)
    [18] S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, A. J. Taylolr, “High-Power Narrow-Band Terahertz Generation Using Large-Aperture Photoconductors,” IEEE J. Quantum Electronics, vol. 35, pp. 1257 (1999)
    [19] P. K. Benicewicz, J. P. Robers, A. J. Taylor, “Scaling of terahertz radiation from large-aperture biased photoconductors,” J. Opt. Soc. Am. B, vol. 11, pp. 2533 (1994)
    [20] David K. Cheng, “Field and wave Electromagnetics,” 2nd edition, pp. 600-605
    [21] D. F. Filipovic, S. S. Gearhart, G. M. Rebeiz, “Double-Solt Antennas on Ex-tended Hemispherical and Elliptical Silicon Dielectric Lenses,” IEEE Trans. Mi-crowave Theory and Techniques, vol. 41, pp. 1738 (1993)
    [22] Q. Wu, X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 24, pp. 3523 (1995)
    [23] Q. Wu, X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett., vol. 68, no. 21, pp. 1604 (1996)
    [24] Q. Wu, M. Litz, X. C. Zhang, “Broadband detection capability of ZnTe elec-tro-optic field detectors,” ,” Appl. Phys. Lett., vol. 68 no. 21, pp. 2924 (1996)
    [25] Q. Wu, X. C. Zhang, “Free-space electro-optic sampling of mid-infrared pulses,” Appl. Phys. Lett., vol. 71, no. 10, pp. 1285 (1997)
    [26] Paul. C. M. Planken, H. K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measure-ment and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B, vol. 18, pp. 313 (2001)
    [27] 黃文雄 儀器總覽7-電子測試儀器/鎖相放大器 ISBN:957-02-2526-2
    [28] Stanford Research System, SR-830 DSP Lock-in Amplifier User’s Manual

    Chapter 3
    [1] D.-Y. Lee, S.-J. Yoon, J. H. Yeo, S. Nahm, J. H. Paik, K.-C. Whang, B.-G. Ahn, “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ce-ramics,” J. Materials Science Letters, vol. 19, pp. 131 (2000)
    [2] 余承遠, “EXAFS and Raman Characterization of xLa(Mg1/2Sn1/2)O3 - (1-x)La(Mg1/2Ti1/2)O3 Microwave Ceramics,” 國立台灣師範大學物理學系碩士論文 (2007)
    [3] G. Santosh Babu, V. Subramanian, V. R. K. Murthy, I. N. Lin, C. T. Chia, H. L. Liu, “Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5-x)Snx)O3 ceramics” J. Appl. Phy., vol. 102, pp. 064906 (2007)
    [4] G. Santosh Babu, V. Subramanian, “Structure determination and microwave di-electric properties of La(MgSn)0.5O3 ceramics”, J. Eur. Ceram. Soc, vol. 27, pp. 2973 (2007)
    [5] J. C. Kim, M.-H. Kim, J.-B. Lim, S. Nahm, J.-H. Paik, J.- H. Kim, “Synthesis and Microwave Dielectric Properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics,” J. Am. Ceram. Soc., vol. 90, pp. 641 (2007)
    [6] Haruo Sawada, “Electron Density Study of Garnets: Z3Ga5O12 ; Z=Nd, Sm, Gd, Tb,” J. Solid State Chemistry, vol. 132, pp. 300-307 (1997)
    [7] 呂杰翰, “Characterizing Microwave Properties of Gallium-Garnet Re3Ga5O12,” 國立台灣師範大學物理學系碩士論文 (2007)

    Chapter 4
    [1] B. B. Hu, X. C. Zhang, and D. H. Auston, “Terahertz Radiation Induced by Sub-band-Gap Femtosecond Optical Excitation of GaAs,” Phy. Rev. Lett., vol. 67, no. 19, pp. 2709 (1991)
    [2] 王信介, “Optical studies of Re3Ga5O12 (Re = Nd, Sm, Eu and Dy) bulk and Ba(Mg1/3Ta2/3)O3 thin films,” 國立台灣師範大學物理學系碩士論文 (2008)
    [3] J. C. Kim, M.-H. Kim, J.-B. Lim, S. Nahm, J.-H. Paik, J.- H. Kim, “Synthesis and Microwave Dielectric Properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics,” J. Am. Ceram. Soc., vol. 90, pp. 641 (2007)
    [4] Daniel R. Grischkowsky, “Unique Applications of THz Time-Domain Spectros-copy and Waveguide THz-TDS,” IEEE Xplore, 2-9 Sept., pp. 20-23 (2007)
    [5] Martin van Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett., vol. 14, no. 20, pp. 1128-1130 (1989)
    [6] 余承遠, “EXAFS and Raman Characterization of xLa(Mg1/2Sn1/2)O3 - (1-x)La(Mg1/2Ti1/2)O3 Microwave Ceramics,” 國立台灣師範大學物理學系碩士論文 (2007)
    [7] G. Santosh Babu, V. Subramanian, V. R. K. Murthy, I. N. Lin, C. T. Chia, H. L. Liu, “Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5-x)Snx)O3 ceramics” J. Appl. Phy., vol. 102, pp. 064906 (2007)

    附錄
    [1] 汪治平, “超快雷射與超強電磁場,” 科學發展, 2005年6月, 第390期, p60-65
    [2] 許聖賢, “Probing the Thin Films via Terahertz Spectroscopic Technique,” 國立台灣海洋大學光電科學研究所碩士論文(2005)

    下載圖示
    QR CODE