研究生: |
鄭景文 Ching-Wen Cheng |
---|---|
論文名稱: |
雙軸機械手臂之適應性模糊滑動模式控制 Adaptive Fuzzy Sliding-Mode Control of a Two-Link Robot Manipulator |
指導教授: |
呂有勝
Lu, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 機械手臂 、適應性模糊補償器 、干擾估測器 |
英文關鍵詞: | Robot manipulator, Adaptive fuzzy compensator, Disturbance observer |
論文種類: | 學術論文 |
相關次數: | 點閱:379 下載:37 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的是針對機械手臂之循軌控制提出適應性模糊滑動模式控制。於系統模型部份已知的情況下,運用極點配置法來設計標稱控制器給予機械手臂之理想動態,並透過滑動模式干擾估測器及適應性模糊補償器將系統的不確定性及外部干擾予以補償。
利用滑動模式干擾估測器來提昇整體控制架構之初始性能,並對於未知的干擾給予快速有效的補償,以提升控制架構的強健性能。適應性模糊補償器透過自訂適應性法則,將控制系統中的未知干擾建模於模糊規則庫;當建模完成便可依據系統之狀態,查得目前的系統干擾,以達到即時的干擾補償,因此可進一步改善滑動模式干擾估測器補償的相位落後問題。
本文實驗平台之架構上,採用美國德州儀器公司(Texas Instruments, TI)所生產之TMS320C6713 DSP搭配具FPGA之自製擴充子板為實驗平台。在FPGA方面,以硬體描述語言(VHDL)撰寫Encoder, A/D與D/A等週邊界面程式;在控制器實現上,利用TI所提供的Code Composer Studio (CCS)環境下以C/C++撰寫控制器程式並下載到DSP上執行。經由自製的雙軸機器手臂實驗平台進行追圓軌跡控制,結果顯示能有效提升循軌的表現及降低循軌誤差。
A scheme of adaptive fuzzy sliding-mode control is proposed in this paper to deal with highly nonlinear dynamics of robotic manipulators for trajectory tracking. By using a simplified model, a nominal controller is obtained by pole placement design to specify ideal closed-loop dynamics. Then, an adaptive fuzzy compensator augmented with a sliding-mode disturbance observer (SDOB) compensates for system uncertainties and external disturbances.
The SDOB ensures well transient performance and compensates well for unknown perturbation. In addition, the adaptive fuzzy compensator is used to model an unknown disturbance according to the proposed adaptive law. When the perturbation has been well modeled, the control system can efficiently compensate for the disturbance, avoiding the phase-lag problem associated with the SDOB.
The experimental system for studies on a two-link robotic manipulator tracking a circular trajectory contains a DSP/FPGA system, which is the control kernel. We use C language and very-high-speed hardware description language (VHDL) as tools for developing a servo control system. The experimental results show that the proposed scheme improves the tracking performance and decreases the tracking error.
[1] 簡銘志,“工業機械臂之適應控制理論的發展”,智慧型機器人產業情報報告,No.50,pp. 11-21,2011。
[2] R. J. Wai and Z. W. Yang, “Adaptive Fuzzy Neural Network Control Design via a T-S Fuzzy Model for a Robot Manipulator Including Actuator Dynamics,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 38, no. 5, pp. 1326-1346, 2008.
[3] S. Labod and T. M. Guerra, “Indirect Adaptive Fuzzy Control for a Class of Nonaffine Nonlinear Systems with Unknown Control Directions,” International Journal of Control, Automation and Systems, vol. 8, no. 4, pp. 903-907, 2010.
[4] G. Li and Y. Zeng, “BIBO Stabilization of T-S Fuzzy Neutral Systems by LMI Approach,” International Journal of Control, Automation and Systems, vol. 8, no. 4, pp. 850-856, 2010.
[5] H. Y. Chen and J. W. Liang, “Adaptive Sliding Control with Self-Tuning Fuzzy Compensation for a Piezoelectrically Actuated X–Y Table,” Control Theory and Applications, vol. 4, no. 11, pp. 2516-2526, 2010.
[6] Y. S. Lu and J. S. Chen, “A Self-Organizing Fuzzy Sliding-Mode Controller Design for a Class of Nonlinear Servo Systems,” IEEE Transactions on Industrial Electronics., vol. 41, no. 5, pp. 492-502, 1994.
[7] S. B. Choi and J. S. Kim, “A Fuzzy-Sliding Mode Controller for Robust Tracking of Robotic Manipulators,” Mechatronics, vol. 7, no. 2, pp. 199-216, 1997.
[8] N. Yagiz and Y. Hacioglu, “Robust Control of a Spatial Robot Using Fuzzy Sliding Modes,” Mathematical and Computer Modelling, vol. 49, no. 1-2, pp. 114-127, 2009.
[9] Y. W. Cho and K. S. Seo and H. J. Lee “A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control,” International Journal of Control, Automation, and Systems, vol. 5, no. 6, pp. 630-642, 2007.
[10] M. O. Efe, “Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 38, no. 6, pp. 1561-1570, 2008.
[11] C. G. Kang, “Variable Structure Fuzzy Control Using Three Input Variables for Reducing Motion Tracking Errors,” Journal of Mechanical Science and Technology, vol. 23, no. 5, pp. 1354-1364, 2009.
[12] 王炫文,高性能加速規之研製與無刷伺服系統之速度估測與干擾補償,國立雲林科技大學機械工程學系研究所碩士論文,2007。
[13] 鄭兆閔,無刷伺服馬達之改良型PID控制與干擾補償,國立雲林科技大學機械工程學系研究所碩士論文,2003。
[14] 鄒家弘,雙軸機器手臂之模糊控制,國立雲林科技學機械工程學系碩士班碩士論文,2009。
[15] Vertex 2.5V Field Programmable Gate Arrays Datasheet, Xilinx Inc, 2001.
[16] 張宏鳴,同步磁阻馬達灰色模糊滑動模式控制,國立雲林科技學電機工程學系碩士班碩士論文,2003。
[17] 紀宗仁,以T-S模糊方法為基礎之無感測器永磁同步馬達輸出追蹤控制,中原大學電機工程學系碩士學位論文,2004。
[18] 范振鈞,無電流感測電源轉換器之模糊控制,中原大學電機工程學系碩士學為論文,2004。
[19] 周晏玲,應用動態模糊系統於旋轉式倒單擺系統之分析與控制,大葉大學機電自動化研究所碩士班碩士論文,2004。
[20] 劉聖濠,積分控制之初始值補償策略實作,碩士論文,國立雲林科技大學機械工程系,雲林、台灣,2008。
[21] TMS320C6711 DSK Help, Texas Instruments Incorporated, 2001.
[22] TMS320C6711 DSP Datasheet, SPRS073D, Texas Instruments Incorporated, 1998, 2000.