研究生: |
蔡慧穎 Tsai, Hui-Ying |
---|---|
論文名稱: |
全無機二維層狀錫鹵素鈣鈦礦奈米晶體 All-Inorganic Tin Halide Ruddlesden-Popper phase Perovskite Nanocrystals |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 無鉛 、錫鈣鈦礦 、全無機 、Ruddlesden-Popper 、奈米材料 |
英文關鍵詞: | Lead-free, Tin-based perovskite, all-inorganic, Ruddlesden-Popper, nanocrystal |
DOI URL: | http://doi.org/10.6345/NTNU202000675 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於鉛具有劇毒且環境危害,使無鉛的新型全無機鈣鈦礦材料變成研究的熱點,其中,以全無機錫鹵素鈣鈦礦為較具有前瞻性的替代品,因為具有較窄的能隙以及與鉛類似的光電特性。然而,三維錫鹵素鈣鈦礦在空氣中的穩定性極差,阻礙了三維錫鹵素鈣鈦礦在光伏領域上的發展,為了得到穩定性較佳且導電度較好的錫鹵素鈣鈦礦奈米材料,本篇研究使用熱注射法將十八烷二酸(Octadecanedioic acid)引入形成強的表面配體,成功合成出層數為三且相穩定的全無機二維層狀Ruddlesden-Popper (RP)相鈣鈦礦Cs4Sn3Br10奈米晶體。由電子顯微鏡觀察到材料大小約為150 nm的長方體,且選區繞射圖譜可對應X-光粉末繞射圖的繞射峰。由X-光粉末繞射圖中的重複單元確認該材料為層狀結構,其結果符屬於n = 3的計算圖。而其最大放光波長在450 nm,且螢光量子產率為12%。此外,由於量子井效應影響,使其放光波長產生藍移,並使螢光量子產率提升。另外,在室溫和相對濕度為60%的情況下通過固態螢光光譜儀和X-光繞射測量,發現二維材料的穩定性比三維材料更好。
Recently, many literatures demonstrated three-dimensional (3D) lead–free perovskite materials such as Tin-based all-inorganic perovskite CsSnX3 (X =Cl, Br, I) to replace toxic Pb-based all-inorganic perovskite. This class of materials have a narrow energy bandgap and the optical and electrical characteristics are similar to lead-based perovskite. However, the key issue for commercialization is poor environmental stability. In order to obtain perovskite nanomaterials with better stability, we present a strong binding energy surface ligand octadecanedioic acid (ODA) to synthesis all-inorganic Ruddlesden-Popper phase tin-based perovskite nanocrystals with a quantum well structure by hot injection method. The TEM images show a 150 nm rectangle and the SAED match with XRD patterns. The repeating unit of the XRD pattern confirms that the material is a layered structure, and the results are fitted the calculation pattern which belong to n=3. The PL emission of 3D CsSnBr3 is about 680nm, and the PLQY is below 1%. In contrast, the PL emission of 2D NCs is about 450 nm, and the PLQY is about 12%. As a result of strong quantum well effect, the PL emission blue shifted and the PLQY increased. Compared to 3D CsSnBr3 NCs (several hours), the 2D NCs performed better stability (one month) than 3D at room temperature under 60% relative humidity by solid-state PL and XRD measurement.
[1]. 陳家俊; 牟中原, 奈米材料研究發展. 科學發展 2000, 28 (4), 281-288.
[2]. Edvinsson, T., Optical quantum confinement and photocatalytic properties in
two-, one- and zero-dimensional nanostructures. Royal Society Open Science 2018, 5 (9), 180387.
[3]. Akkerman, Quinten. Lead Halide Perovskite Nanocrystals: A New Age of
Semiconductive Nanocrystals. 2019.
[4]. 賴炤銘; 李錫隆, 奈米材料的特殊效應與應用.
CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)December. 2003, 61 (4) 585-597.
[5]. Yi, Z.; Ladi, N. H.; Shai, X.; Li, H.; Shen, Y.; Wang, M., Will organic–inorganic
hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Advances 2019, 1 (4), 1276-1289.
[6]. Stoumpos, C. C.; Kanatzidis, M. G., The Renaissance of Halide Perovskites and
Their Evolution as Emerging Semiconductors. Accounts of Chemical Research 2015, 48 (10), 2791-2802.
[7]. Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G.,
On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 2016, 7 (7), 4548-4556.
[8]. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.;
Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347 (6221), 519-522.
[9]. Soufiani, A. M.; Huang, F.; Reece, P.; Sheng, R.; Ho-Baillie, A.; Green, M. A.,
Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites. Applied Physics Letters 2015, 107 (23), 231902, 1-5.
[10]. Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G., A Review: Thermal
Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Applied Sciences 2019, 9 (1), 1-25.
[11]. Wang, Z.; Zhou, Y.; Pang, S.; Xiao, Z.; Zhang, J.; Chai, W.; Xu, H.; Liu, Z.;
Padture, N. P.; Cui, G., Additive-Modulated Evolution of HC(NH2)2PbI3 Black Polymorph for Mesoscopic Perovskite Solar Cells. Chemistry of Materials 2015, 27 (20), 7149-7155.
[12]. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical
management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters 2013, 13 (4), 1764-1769.
[13]. Fang, F.; Chen, W.; Li, Y.; Liu, H.; Mei, M.; Zhang, R.; Hao, J.; Mikita, M.; Cao,
W.; Pan, R.; Wang, K.; Sun, X. W., Employing Polar Solvent Controlled Ionization in Precursors for Synthesis of High-Quality Inorganic Perovskite Nanocrystals at Room Temperature. Advanced Functional Materials 2018, 28 (10), 1706000.
[14]. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan,
X.; Han, S.; Liang, L.; Yi, Z.; Li, J.; Xie, X.; Wang, Y.; Li, Y.; Fan, D.; Teh, D. B. L.; All, A. H.; Mohammed, O. F.; Bakr, O. M.; Wu, T.; Bettinelli, M.; Yang, H.; Huang, W.; Liu, X., All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561 (7721), 88-93.
[15]. Hoefler, S. F.; Trimmel, G.; Rath, T., Progress on lead-free metal halide
perovskites for photovoltaic applications: a review. Monatshefte fuer Chemie 2017, 148 (5), 795-826.
[16]. Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M., Low-Dimensional-
Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters 2017, 2 (4), 889-896.
[17]. Zheng, Y.; Niu, T.; Ran, X.; Qiu, J.; Li, B.; Xia, Y.; Chen, Y.; Huang, W., Unique
characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A 2019, 7 (23), 13860-13872.
[18]. Ma, H.; Imran, M.; Dang, Z.; Hu, Z., Growth of Metal Halide Perovskite, from
Nanocrystal to Micron-Scale Crystal: A Review. Crystals 2018, 8(5), 182.
[19]. Pasquarelli, R. M.; Ginley, D. S.; O'Hayre, R., Solution processing of transparent
conductors: from flask to film. Chemical Society Reviews 2011, 40 (11), 5406-5441.
[20]. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton,
S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941-2944.
[21]. Huang, L.-Y.; Lambrecht, W., Electronic band structure, phonons, and exciton
binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Physical Review B 2013, 88 (16), 165203.
[22]. Ke, W.; Kanatzidis, M. G., Prospects for low-toxicity lead-free perovskite solar
cells. Nature Communications 2019, 10 (1), 965.
[23]. Xiao, Z.; Zhou, Y.; Hosono, H.; Kamiya, T., Intrinsic defects in a photovoltaic
perovskite variant Cs2SnI6. Physical Chemistry Chemical Physics 2015, 17 (29), 18900-18903.
[24]. Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A., Enhanced stability and
efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 2016, 1 (12), 16178.
[25]. Chen, M.; Ju, M.-G.; Garces, H. F.; Carl, A. D.; Ono, L. K.; Hawash, Z.; Zhang,
Y.; Shen, T.; Qi, Y.; Grimm, R. L.; Pacifici, D.; Zeng, X. C.; Zhou, Y.; Padture, N. P., Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications 2019, 10 (1), 16.
[26]. Wang, A.; Guo, Y.; Muhammad, F.; Deng, Z., Controlled Synthesis of Lead-Free
Cesium Tin Halide Perovskite Cubic Nanocages with High Stability. Chemistry of Materials 2017, 29 (15), 6493-6501.
[27]. RUDDLESDEN, S. N.; POPPER, P., New compounds of the K2NiF4 type.
Acta Cryst 1957, 10, 538-539.
[28]. RUDDLESDEN, S. N.; POPPER, P., The compound SrsTi207 and its structure.
Acta Cryst 1958, 11, 54-55.
[29]. Tsujimoto, Y.; Yamaura, K.; Takayama-Muromachi, E., Oxyfluoride Chemistry
of Layered Perovskite Compounds. Applied Sciences 2012, 2 (1), 206-219.
[30]. Zhang, X.; Wang, C.; Zhang, Y.; Zhang, X.; Wang, S.; Lu, M.; Cui, H.; Kershaw,
S. V.; Yu, W. W.; Rogach, A. L., Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Letters 2018, 4 (1), 242-248.
[31]. Cao, D. H.; Stoumpos, C. C.; Yokoyama, T.; Logsdon, J. L.; Song, T.-B.; Farha,
O. K.; Wasielewski, M. R.; Hupp, J. T.; Kanatzidis, M. G., Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites. ACS Energy Letters 2017, 2 (5), 982-990.
[32]. Wang, A.; Guo, Y.; Zhou, Z.; Niu, X.; Wang, Y.; Muhammad, F.; Li, H.; Zhang,
T.; Wang, J.; Nie, S.; Deng, Z., Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chemical Science 2019, 10 (17), 4573-4579.
[33]. Lanzetta, L.; Marin-Beloqui, J. M.; Sanchez-Molina, I.; Ding, D.; Haque, S. A.,
Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters 2017, 2 (7), 1662-1668.
[34]. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid
Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286 (5441), 945.
[35]. Li, F.; Xie, Y.; Hu, Y.; Long, M.; Zhang, Y.; Xu, J.; Qin, M.; Lu, X.; Liu, M.,
Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters 2020, 5 (5), 1422-1429.
[36]. Li, J.; Stoumpos, C. C.; Trimarchi, G. G.; Chung, I.; Mao, L.; Chen, M.;
Wasielewski, M. R.; Wang, L.; Kanatzidis, M. G., Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides AxSnClyIz (A = Cs, Rb). Chemistry of Materials 2018, 30 (14), 4847-4856.
[37]. Chang, J.; Waclawik, E. R., Colloidal semiconductor nanocrystals: controlled
synthesis and surface chemistry in organic media. RSC Advances 2014, 4 (45), 23505-23527.
[38]. Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I.,
A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie International Edition 2014, 53 (42), 11232-11235.
[39]. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan,
B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536 (7616), 312-316.
[40]. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.;
Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology 2014, 9 (9), 687-692.
[41]. Zhao, B.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J. M.;
Yang, L.; Dai, L.; Alsari, M.; She, X.-J.; Liang, L.; Zhang, J.; Lilliu, S.; Gao, P.; Snaith, H. J.; Wang, J.; Greenham, N. C.; Friend, R. H.; Di, D., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics 2018, 12 (12), 783-789.
[42]. Jia, G.; Shi, Z.-J.; Xia, Y.-D.; Wei, Q.; Chen, Y.-H.; Xing, G.-C.; Huang, W.,
Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes. Optics Express 2018, 26 (2), A66-A74.
[43]. Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.;
Lu, Y.; Zhang, Y.; Bao, Q., Two-Dimensional CH3NH3PbI3 Perovskite: Synthesis and Optoelectronic Application. ACS Nano 2016, 10 (3), 3536-3542.
[44]. Li, Z.-J.; Hofman, E.; Davis, A. H.; Maye, M. M.; Zheng, W., General Strategy
for the Growth of CsPbX3 (X = Cl, Br, I) Perovskite Nanosheets from the Assembly of Nanorods. Chemistry of Materials 2018, 30 (11), 3854-3860.
[45]. Acharyya, P.; Maji, K.; Kundu, K.; Biswas, K., 2D Nanoplates and Scaled-Up
Bulk Polycrystals of Ruddlesden–Popper Cs2PbI2Cl2 for Optoelectronic Applications. ACS Applied Nano Materials 2020, 3 (1), 877-886.