簡易檢索 / 詳目顯示

研究生: 陳炳權
Chen, Ping-Chuan
論文名稱: 造山運動期間地殼動力演化:以華南沿海金門島為例
Crustal Dynamics During Orogenic Evolution:An Example from Kinmen Island, SE China
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 岩脈晚燕山造山運動應力場
英文關鍵詞: Dike, Late Yenshanian Orogeny, Stress regime
DOI URL: https://doi.org/10.6345/NTNU202202047
論文種類: 學術論文
相關次數: 點閱:77下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 造山運動為形成造山帶的大規模板塊構造運動事件,可以利用溫度、壓力、岩漿訊號、應力與液壓等不同條件將其區分為同造山期、後造山期及非造山期。前人研究預期在同造山時期以逆斷層應力場,後造山時期為走向滑移斷層應力場至非造山時期的正斷層應力場。雖依據野外露頭可初步判別應力場形式,但缺乏良好材料去重建造山帶應力場,因此鮮有相關報導討論造山帶應力演化情形,導致難以更細節地重建地體構造演化模型。
    金門位於中國大陸華南沿海地區,白堊紀期間華南沿海發生東北-西南方向山系的晚燕山造山運動,將中下部地殼抬升至地表,同時各造山階段各自有不同的岩漿侵入,形成獨特而豐富的岩脈景觀。同造山期的角閃岩侵入體,侵入年代約138-132Ma;後造山期侵入體包含偉晶岩與細晶岩,侵入年代約110-100Ma;非造山期的輝綠岩侵入體,侵入年代約94-76Ma。這些岩脈侵入體位態則可反映當時最小主應力方向與應力場以及液壓相關資訊,因此可利用不同階段岩脈的資料重建金門地區應力場演化史。
    岩脈侵入體形成時,岩漿液壓至少要達到最小正應力,方能將岩體撐裂並於裂隙中冷卻,形成侵入體。統計充分的岩脈資料,將能判斷侵入當下三維應力場及液壓在其中所扮演的角色。利用岩石力學參數與地質壓力計的平均應力或鉛直應力,可進一步三維應力規模與液壓數值,進而可比較不同造山時期的應力場演化關係。
    本研究於金門島與烈嶼島沿海地區量測岩脈位態,評估地殼尺度應力場,重建金門地區於晚燕山造山運動地殼尺度應力場演化史。
    1.不同造山時期所對應的地殼尺度應力場為:同造山時期為逆斷層應力場,後造山時期與非造山時期則是正斷層應力場,但後造山時期應力場數值結果卻較為集中於走向滑移斷層應力場形式。
    2.同造山時期以低角度的角閃岩與英雲閃長岩侵入體為做應力反演之素材,結果顯示為斜交東北-西南向山系之東西向擠壓逆斷層應力場,應力比值為0.54±0.18,液壓比值約為0.59,侵入深度約24.9km。呈現低角度橢球狀逆斷層應力場,岩脈形成於液壓狀態略高於靜岩壓,地溫梯度約為30.1℃/km。結合野外環繞金門太武山與東北角外海之葉理面,可能在後造山岩體侵入前便轉移至走向滑移斷層應力場或正斷層應力場。
    3.後造山時期,以偉晶與細晶岩脈為材料,地質壓力計則採用華南內陸後造山岩體鋁角閃石壓力計,結果顯示應力比值為0.69±0.14,液壓比值約為1.02,形成深度約5.5公里,地溫梯度約為93.5℃/km。屬於西北-東南向擠壓之平板狀正斷層應力場。岩脈形成於液壓狀態為大於靜岩壓。
    4.非造山期是平行東北-西南山系方向擠壓之正斷層平板狀應力場,應力比值0.68±0.08,液壓比值約為0.72或0.17,地溫梯度約為77.7℃/km。呈現平板狀正斷層應力場。岩脈形成於液壓狀態接近靜岩壓。
    5.藉由金門地區在晚燕山期鉛直應力轉換為絕對深度,結合前人定年結果,進一步評估同造山時期到後造山時期的剝蝕速率為0.82-0.49mm/yr,而後造山期至非造山期的剝蝕速率則減慢至0.35-0.04mm/yr。

    Orogeny refers to the event of making mountain belt. During orogeny, a mountain belt experienced different orogenic stages, including syn-orogeny, post-orogeny, and an-orogeny, with various conditions of temperature, pressure, geochemical signature, stress and fluid pressure. Researchers usually expect to observe different stress regimes corresponding to different orogenic stages. So far, no document had reported the phenomena of stress evolution from reverse faulting via strike-slip faulting to normal faulting stress regimes in stages of syn-orogenic, post-orogenic and an-orogenic, respectively.
    However, Study of dikes from Kinmen Island can shed light to show the stress evolution of orogeny. The Kinmen Island, located in the southeastern continental margin of Mainland China, cropped out the middle-lower continental crust, which was experienced different deformation and metamorphism during Late Yenshanian Orogeny. Based on previous studies of geochemistry, geochronology, and P-T condition, different types of dikes are identified. They are syn-orogenic dikes of amphibolite (138-132Ma), post-orogenic dikes of pegmatite and aplite (110-100Ma), and an-orogenic dike of gabbro (94-76Ma).
    The mechanism of dike development is when magma pressure overcomes the minimum stress, magma can create the intrusive dike perpendicular with the minimum stress. By investigating the distribution and attitude of dikes with different lithologies, stress orientation corresponding to the different orogenic stage can be estimated. With the constraint of rock strength, mean stress from geobarometer and vertical stress in each stage, the magnitude of stress field and magma pressure for each stage can be further calculated.
    This research restructured crustal dynamics evolution during Late Yanshanian Orogeny by measuring the attitude of dike around Kinman and Leiyu island.
    (1) Compared with orogenic stage and crustal stress regime: syn-orogeny was reverse faulting stress regime, post-orogeny and an-orogeny were normal faulting stress regime. But, the value of post-orogenic stage stress field was strike-slip faulting stress regime.
    (2) As the syn-orogenic stage, amphibolite and tonalite dike intrusion appeared as low dip angle, which reflected that reverse faulting regime and horizontal maximum stress direction in E-W orientation. This orientation was oblique the orientation of mountain belt, NW-SE. The stress ratio was 0.54±0.18. The fluid ratio was 0.59. The intrusive depth was 24.9km. These result reflected ellipsoid reverse faulting stress regime. The geothermal gradient was 30.1℃/km. Dikes formed in the environment, which fluid pressure were higher than lithostatic pressure. Integrate with outcrop result, the stress regime would change to strike-slip faulting stress regime or normal faulting stress regime.
    (3)As the post-orogenic stage, this study uses the attitude of pegmatite and aplite dike. Geobarometer uses Al-amp geobarometer inland, SE China. The str ess ratio was 0.69±0.14. The fluid ratio was 1.02. The intrusive depth was 5.5km. These result reflected plate normal faulting stress regime and horizontal maximum stress direction in NW-SE. The geothermal gradient was 93.5℃/km. Dikes formed in the environment, which fluid pressure was higher than lithostatic pressure.
    (4)Finally, an-orogenic dike intrusion struck NE-SW with steep dip angle direction, which reflected that normal faulting regime and NE-SW horizontal maximum stress direction. The stress ratio was 0.68±0.08. The fluid ratio was 0.72 or 0.17. The intrusive depth was 4.5km. The geothermal gradient was 77.7℃/km. These result reflected plate normal faulting stress regime. Dikes formed in the environment, which fluid pressure were lower than lithostatic pressure.
    (5)The vertical stress variation, a.k.a. erosion velocity ,in Kinmen area during Late Yanshanian Orogeny, syn-orogenic stage to post-orogenic stage erosion velocity was 0.82-0.49mm/yr, and post-orogenic stage to an-orogenic stage was 0.35-0.04mm/yr.

    誌謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 第一節 研究動機 1 第二節 區域地質 4 第三節 研究目的 14 第二章 研究方法 16 第一節 岩漿侵入機制 16 第二節 岩漿侵入體與應力關係 20 第三節 應力場重建 22 第四節 應力數值評估法 25 第五節 研究流程 29 第三章 研究結果 30 第一節 非造山期 30 第二節 後造山期 37 第三節 同造山期 44 第四章 討論 58 第一節 應力場評估法影響因素 58 第二節 應力場情境分析比較 60 第三節 金門地區晚燕山造山運動應力場地體動力演化 69 第四節 華南地區地體動力演化比較 76 第五章 結論與建議 78 第一節 結論 78 第二節 建議 79 參考文獻 80 附錄一:程式碼 87 主程式MC.m 87 主要分析副程式:Stressinversion.m 90 副程式Ratiopoint.m 93 副程式RheologicStress.m 94 副程式HB.m 95 KS檢定用副程式:gof.m 96 KS檢定用副程式:QKs.m 101 附件二:應力分析參數代號 102

    Anderson, E. M., 1905, The dynamics of faulting: Transactions of the Edinburgh Geological Society, v. 8, no. 3, p. 387-402.
    André, A.-S., Sausse, J., and Lespinasse, M., 2001, New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine graben, France): Tectonophysics, v. 336, no. 1, p. 215-231.
    Angelier, J., 1994, Fault slip analysis and paleostress reconstruction: Continental deformation, v. 4, p. 53-100.
    Baer, G., Beyth, M., and Reches, Z. e., 1994, Dikes emplaced into fractured basement, Timna igneous complex, Israel: JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, v. 99, p. 24,039-024,039.
    Barrell, J., 1914, The Strength of the Earth's Crust: The Journal of Geology, v. 22, no. 7, p. 655-683.
    Bingham, C., 1974, An antipodally symmetric distribution on the sphere: The Annals of Statistics, p. 1201-1225.
    Borradaile, G. J., 2013, Statistics of earth science data: their distribution in time, space and orientation, Springer Science & Business Media.
    Bowen, N., 1922, The reaction principle in petrogenesis: The Journal of Geology, v. 30, no. 3, p. 177-198.
    Chan, C.-H., Hsu, Y.-J., and Wu, Y.-M., 2012, Possible stress states adjacent to the rupture zone of the 1999 Chi-Chi, Taiwan, earthquake: Tectonophysics, v. 541–543, p. 81-88.
    Chen, C.-H., Lin, W., Lan, C.-Y., and Lee, C.-Y., 2004, Geochemical, Sr and Nd isotopic characteristics and tectonic implications for three stages of igneous rock in the Late Yanshanian (Cretaceous) orogeny, SE China: Geological Society of America Special Papers, v. 389, p. 237-248.
    Chen, C.-H., Lin, W., Lu, H.-Y., Lee, C.-Y., Tien, J.-L., and Lai, Y.-H., 2000, Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism: Geological Society of America Special Papers, v. 350, p. 195-205.
    Chen, N.-h., Dong, J.-j., Chen, J.-y., Dong, C.-w., and Shen, Z.-y., 2014, Geometry and emplacement of the Late Cretaceous mafic dyke swarms on the islands in Zhejiang Province, Southeast China: Insights from high-resolution satellite images: Journal of Asian Earth Sciences, v. 79, p. 302-311.
    Chen, W.-S., Yang, H.-C., Wang, X., and Huang, H., 2002, Tectonic setting and exhumation history of the Pingtan–Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China: Journal of Asian Earth Sciences, v. 20, no. 7, p. 829-840.
    Cloetingh, S., Bada, G., Matenco, L., Lankreijer, A., Horváth, F., and Dinu, C., 2006, Modes of basin (de) formation, lithospheric strength and vertical motions in the Pannonian-Carpathian system: inferences from thermo-mechanical modelling: Geological Society, London, Memoirs, v. 32, no. 1, p. 207-221.
    Cloetingh, S., Spadini, G., Van Wees, J., and Beekman, F., 2003, Thermo-mechanical modelling of Black Sea Basin (de) formation: Sedimentary Geology, v. 156, no. 1, p. 169-184.
    Condie, K. C., 2005, TTGs and adakites: are they both slab melts?: Lithos, v. 80, no. 1-4, p. 33-44.
    Delaney, P. T., and Pollard, D. D., 1981, Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico: USGPO, 2330-7102.
    Delaney, P. T., Pollard, D. D., Ziony, J. I., and McKee, E. H., 1986, Field relations between dikes and joints: emplacement processes and paleostress analysis: Journal of Geophysical Research: Solid Earth (1978–2012), v. 91, no. B5, p. 4920-4938.
    Fisher, N. I., Lewis, T., and Embleton, B. J., 1987, Statistical analysis of spherical data, Cambridge university press.
    Glover, J., and Popovic, S., Bingham procrustean alignment for object detection in clutter, in Proceedings Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on2013, IEEE, p. 2158-2165.
    Gubbins, D., and Herrero-Bervera, E., 2007, Encyclopedia of geomagnetism and paleomagnetism, Springer Science & Business Media.
    Hammarstrom, J. M., and Zen, E.-a., 1986, Aluminum in hornblende: an empirical igneous geobarometer: American Mineralogist, v. 71, no. 11-12, p. 1297-1313.
    Hirth, G., Teyssier, C., and Dunlap, J. W., 2001, An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks: International Journal of Earth Sciences, v. 90, no. 1, p. 77-87.
    Hoek, E., Carranza-Torres, C., and Corkum, B., 2002, Hoek-Brown failure criterion-2002 edition: Proceedings of NARMS-Tac, v. 1, p. 267-273.
    Hollister, L. S., Grissom, G., Peters, E., Stowell, H., and Sisson, V., 1987, Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons: American Mineralogist, v. 72, no. 3-4, p. 231-239.
    Hou, G., 2012, Mechanism for three types of mafic dyke swarms: Geoscience Frontiers, v. 3, no. 2.
    Huang, S., Pan, Y., and Zhu, R., 2013, Paleomagnetism of the Late Cretaceous volcanic rocks of the Shimaoshan Group in Yongtai County, Fujian Province: Science China Earth Sciences, v. 56, no. 1, p. 22-30.
    Hubbert, M. K., and Rubey, W. W., 1959, Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting: Geological Society of America Bulletin, v. 70, no. 2, p. 115-166.
    Johnson, M. C., and Rutherford, M. J., 1989, Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks: Geology, v. 17, no. 9, p. 837-841.
    Jolly, R. J. H., and Sanderson, D. J., 1997, Mohr opening preexistingfracture: Journal of Structural Geology, v. 19.
    Lan, C.-Y., Chung, S.-L., and Mertzman, S., 1997, Mineralogy and geochemistry of granitic rocks from Chinmen, Liehyu and Dadan Islands, Fujian: JOURNAL-GEOLOGICAL SOCIETY OF CHINA-TAIWAN-, v. 40, p. 527-558.
    Lan, C.-Y., Chung, S.-L., Mertzman, S., and Chen, C.-H., 1995, Mafic dikes from Chinmen and Liehyu islands, off southeast China: petrochemical characteristics and tectonic implications: JOURNAL-GEOLOGICAL SOCIETY OF CHINA-TAIWAN-, v. 38, p. 183-214.
    Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N., Schumacher, J. C., Smith, D. C., Stephenson, N. C., Ungartti, L., Whittaker, E. J., and Yoouzhi, G., 1997, Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: American Mineralogist, v. 82, no. 9-10, p. 1019-1037.
    Lee, T. T. Y., Chan, C. H., Shyu, J. B. H., Wu, Y. M., and Huang, H. H., 2014, Induced transtensional earthquakes after the 1999 Chi-Chi earthquake in the compressional collision belt of western Taiwan: Geophysical Journal International, v. 200, no. 1, p. 638-651.
    Li, J., Zhang, Y., Dong, S., and Johnston, S. T., 2014, Cretaceous tectonic evolution of South China: A preliminary synthesis: Earth-Science Reviews, v. 134, p. 98-136.
    Lin, J., and Stein, R. S., 2004, Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults: Journal of Geophysical Research: Solid Earth, v. 109, no. B2.
    Lo, C., Onstott, T., and Wang Lee, C., 1993, 40Ar/39Ar dating of plutonic/metamorphic rocks from Chinmen Island off Southeast China and its tectonic implications: Jour. Geol. Soc. China, no. 36, p. 35-55.
    Martin, H., 1986, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas: Geology, v. 14, no. 9, p. 753-756.
    Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution: Lithos, v. 79, no. 1-2, p. 1-24.
    Pan, X., Shen, Z., Roberts, A. P., Heslop, D., and Shi, L., 2014, Syntectonic emplacement of Late Cretaceous mafic dyke swarms in coastal southeastern China: Insights from magnetic fabrics, rock magnetism and field evidence: Tectonophysics, v. 637, p. 328-340.
    Pitcher, W. S., 1997, The nature and origin of granite, Springer Science & Business Media.
    Pollard, D. D., 1973, Derivation and evaluation of a mechanical model for sheet intrusions: Tectonophysics, v. 19, no. 3, p. 233-269.
    Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., 1992, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 933 pp, Cambridge Univ. Press, New York.
    Ridolfi, F., Renzulli, A., and Puerini, M., 2010, Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes: Contributions to Mineralogy and Petrology, v. 160, no. 1, p. 45-66.
    Roedder, E., and Bodnar, R., 1980, Geologic pressure determinations from fluid inclusion studies: Annual Review of Earth and Planetary Sciences, v. 8, no. 1, p. 263-301.
    Schmidt, M. W., 1992, Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer: Contributions to mineralogy and petrology, v. 110, no. 2-3, p. 304-310.
    Shah, S., and Hoek, E., 1992, Simplex reflection analysis of laboratory strength data: Canadian Geotechnical Journal, v. 29, no. 2, p. 278-287.
    Shellnutt, J. G., Denyszyn, S. W., and Mundil, R., 2012, Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China): Gondwana Research, v. 22, no. 1, p. 118-126.
    Smithies, R., 2000, The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite: Earth and Planetary Science Letters, v. 182, no. 1, p. 115-125.
    Tödheide, K., 1972, Water at high temperatures and pressures, The Physics and Physical Chemistry of Water, Springer, p. 463-514.
    Tien, J.-L., Chen, C.-H., Lo, C. H., and Lai, Y., 1997, Contrasting cooling rates of coeval granitic plutonism in the Zhangzhou Igneous Complex, SE China: Evidences from 40Ar/39Ar thermochronology and Al-amphibole geobarometer: Jour. Geol. Soc. China, no. 40, p. 607-624.
    Vigneresse, J.-L., Tikoff, B., and Améglio, L., 1999, Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons: Tectonophysics, v. 302, no. 3, p. 203-224.
    Vigneresse, J. L., 1995, Crustal regime of deformation and ascent of granitic magma: Tectonophysics, v. 249, no. 3, p. 187-202.
    Wong, W., 1927, Crustal movements and igneous activities in Eastern China since Mesozoic time. 1: Bulletin of the Geological Society of China, v. 6, no. 1, p. 9-37.
    -, 1929, The Mesozoic Orogenic Movement in Eastern China: Bulletin of the Geological Society of China, v. 8, no. 1, p. 33-44.
    YAMAJI, A., 2016, GArcmB Software Package: Division of Earth and Planetary Sciences, Kyoto University, Japan.
    Yamaji, A., and Sato, K., 2011, Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations: Journal of Structural Geology, v. 33, no. 7, p. 1148-1157.
    Yamaji, A., Sato, K., and Tonai, S., 2010, Stochastic modeling for the stress inversion of vein orientations: Paleostress analysis of Pliocene epithermal veins in southwestern Kyushu, Japan: Journal of Structural Geology, v. 32, no. 8, p. 1137-1146.
    Zoback, M. D., and Townend, J., 2001, Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere: Tectonophysics, v. 336, no. 1, p. 19-30.
    尤崇極、施清芳、張坤城、宋國良、鄧仁杰、張福麟與劉建麟,1991,結晶岩區地質驗證(金門地區)報告書:原子能委原會核能研究所。
    王志洪與盧華復,1996,長樂—南澳韌性剪切带走滑特徵探討:地質論評,第42卷,第1期,第1-7頁。
    台灣電力公司,2013,用過核子燃料最終處置計畫潛在母岩特性調查與評估階段101年度計畫成果報告(修訂二版),共285頁。
    台灣電力公司,2010,我國用過核子燃料最終處置初步技術可行性評估報告,共758頁。
    市村毅,1941,金門島的地質(概要): 台灣地學記事。
    石建基,2011,長樂-南澳構造帶變質變形期次劃分及時代釐定:福建地質,第30卷,第3期,第189-199頁。
    石建基與張守志,2010,長樂-南澳斷裂代中生代活動特徵及大地構造屬性:吉林大學學報(地球科學版),第40卷,第6期,第1333-1343頁。
    李寄嵎,1994,澎湖地區玄武岩類與福建地區基性岩脈之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化,博士:國立台灣大學,共226頁。
    李慶堯,2008,金門的樹葉化石:地質,第27卷,第3期,第55-59頁。
    肖時興,1988,閩—粤東南沿海大陸邊缘韌性剪切带的基本特征:現代地質,第2卷,第1期,第67-80頁。
    周心怡,2004,拔靴法 (Bootstrap) 之探討及其應用,碩士:國立中央大學,共61頁。
    林朝彥,2015,花蓮和平溪下游變質花崗岩之脆韌性與脆性構造研究與其地質意義,碩士:國立臺灣師範大學,共106頁。
    林蔚,1994,金門地區燕山晚期花崗岩類之地球化學及熱歷史研究: 國立台灣大學, 共103頁。
    -,2001,華南沿海地區晚燕山期侵入岩漿活動及大地構造意義,博士:國立台灣大學,共238頁。
    林蔚、李寄嵎、楊小青與陳正宏,2012,五萬分之一臺灣地質圖說明書-金門地區:中央地質調查所,共58頁。
    徐先兵、李源、薛德杰、謝明陽、湯帥、崔建軍與張岳橋,2014,福建泉州晚中生代伸展構造變形特徵與年代學制約:地球科學-中國地質大學學報,第39卷,第1期,第45-63頁。
    徐嘉煒、崔可銳、劉慶、童蔚欣與朱光,1985,東亞大陸邊緣中生代的左行平移斷裂作用:海洋地質與第四紀地質,第5卷,第2期,第51-64頁。
    馬國鋒,1991,長樂—南澳剪切帶江段構造岩特徵及其構造變形機制:福建地質,第4期,第281-296頁。
    高燈亮與周積元,1994,長樂—南澳斷裂带東山段剪切變形與剪切加热作用:上海地質,第1期,第25-33頁。
    莊文星、陳汝卿與孫明志,2005,金門鹼性花崗岩銣-鍶同位素年代學與地球化學:中國地質學會九十四年年會暨學術研討會大會手冊及論文摘要。
    陳培源,1970,金門島及烈嶼地質說明書:經濟部金門地質礦產探勘隊工作報告, 第 7-19 頁。
    陳慶瀚與蔡龍珆,1986,金門島地質誌:台灣地區地球物理研討會。
    舒良樹、于津海與王德滋,2000,長樂-南澳斷裂帶晚中生代岩漿活動與變質-變形關係:高校地質學報,第6卷,第3期,第368-378頁。
    楊小靑,1998,中國東南平潭-東山變質帶之氬同位素熱定年學硏究,博士:國立台灣大學。
    福建省地質礦產局,1985,福建省區域地質誌。
    賴宜欣,1995,福建白堊紀花崗岩之地球化學及礦物化學硏究,碩士:國立台灣大學。
    顏琼美,2005,浙江小將-梁弄岩體及其包體之礦物化學與地球化學研究,碩士:國立台灣大學,共138頁。

    下載圖示
    QR CODE