簡易檢索 / 詳目顯示

研究生: 鄭麗蓮
Lillian Cheng
論文名稱: 極化效應操縱工程用以達成三族氮化物常關模式操作之研究
Manipulation of Polarization Effect to Engineer III-Nitride HEMTs for Normally-Off Operation
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 51
中文關鍵詞: 高電子遷移率場效電晶體常關模式氮化鎵極化
英文關鍵詞: High electron mobility transistor, normally-off, GaN, polarization
論文種類: 學術論文
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由極化工程提出了一個新穎的常關模式氮化鋁鎵/氮化鎵高電子遷移率場效電晶體。此研究最基本的概念是漸變阻擋層 ( barrier-layer ) 的鋁含量,由氮化鎵漸變至氮化鋁鎵,以減緩壓電極化對電子通道的影響,並使導電帶與費米能接重合部分減少,元件的閾值電壓移往正值,以利於常關模式的操作。此外,可以發現元件藉由操作氮化鋁鎵cap-layer的鋁含量,以及在氮化鎵緩衝層的頂部加入p型摻雜,可進一步調整直流電壓-電流特性。此項研究是基於元件的物理特性模擬,提供一個執行高效率常關模式氮化鎵高電子遷移率場效電晶體的方法。

    We propose a novel normally-off AlGaN/GaN HEMT governed by the polarization engineering. The fundamental concept is to grade the Al-composition of barrier-layer from GaN to AlxGa1-xN, alleviating the impact of piezoelectric polarization on the 2-DEG and establishing the conduction-band profile well above the Fermi-energy. All of which leads to a positive shift for the threshold-voltage of the device, and benefits to the normally-off operation. Additionally, it is found that device’s DC transfer characteristics can be further modulated by simply adjusting the Al-composition of AlyGa1-yN cap-layer and the p-type doping concentration on the top of GaN buffer-layer. These findings based on the device’s physical simulation provide a guideline for the implementation of high-efficient normally-off AlGaN/GaN HEMTs.

    致謝 VII 摘要 VIII Abstract IX 第一章 緒論 1 1-1 前言 1 1-2 氮化鎵高電子遷移率場效電晶體 2 1-2-1 氮化鎵材料元件之發展 2 1-2-2 氮化鎵HEMT之應用 4 1-2-3 常關模式之氮化鎵HEMT 5 1-3 研究動機 7 1-4 論文架構 9 第二章 氮化鎵高電子遷移率電晶體元件特性回顧 11 2-1 極化效應 11 2-1-1 極化效應對GaN HEMT之影響 11 2-1-2 極化效應的計算 13 2-2 電子遷移率 17 2-3 衝擊離子化 18 2-4 閘極絕緣層 19 第三章 APSYS模擬軟體 21 3-1 APSYS模擬軟體之簡介 21 3-1-1 APSYS之應用 21 3-1-2 APSYS之功能 22 3-2 APSYS運作流程 22 3-2-1 輸入/輸出檔案 23 3-3 飄移-擴散模型 25 3-3-1 基礎方程式 25 3-3-2 SRH與歐傑複合 26 3-3-3 載子之統計 28 3-3-4 邊界條件 29 第四章 結構設定與模擬結果 32 4-1 結構參數設定 32 4-2 模擬結果與討論 33 第五章 結論 45 參考文獻 46 附錄A Crosslight專業術語符號 i

    [1] D. A. Neamen, “Fundamentals of semiconductor devices,” McGraw-Hill, 1st edition, 2002.
    [2] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen, and W. L. Li, “Nitride-based LEDs with n-GaN current spreading layer,” IEEE Electron Dev. Lett., Vol. 26, pp. 891-893, 2005.
    [3] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., Vol. 93, pp. 143502, 2008.
    [4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada,T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto,M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN -based laser diodes grown on GaN substrates” Appl. Phys. Lett., Vol.72, pp. 2014, 1998.
    [5] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE Electron Device Letters, Vol. 22, pp. 457-459, 2001.
    [6] E. M. Chumbes, J. A. Smart, T. Prunty, J. R. Shealy, “Microwave performance of AlGaN/GaN metal insulator semiconductor field effect transistors on sapphire substrates,” IEEE Trans. Electron Device, Vol. 48, pp. 416-419, 2001.
    [7] T. P. Chow, “SiC and GaN high-voltage power switching devices,” Materials Science Forum, Vol. 338-342, pp. 1155-1160, 2000.
    [8] Y. F. Wu, B. P. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett., Vol. 69, pp. 1438-1440, 1996.
    [9] U. K. Mishra, L. Shen, Thomas E. Kazior, and Y. F. Wu, “GaN-Based RF Power Devices and Amplifiers,” IEEE, Vol. 96, pp. 287-305, 2008.
    [10] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans, Electron Device, vol. 41, 1481-1483, 1994.
    [11] M. Trivedi and K. Shenai, “Performance evaluation of high-power wide bandgap semiconductor rectifiers,” J. Appl, phys., vol. 85, pp. 6889-6897, 1999.
    [12] Y.-R.Wu, M. Singh, and J. Singh, “Lateral and Vertical Charge Transport in Polar Nitride Heterostructures,” From Ab Initio Theory to Device Applications, pp. 111-159, 2008.
    [13] U.K. Mishra , P. Parikh, Y.F. Wu,” AlGaN/GaN HEMTs: An overview of device operation and applications,” Proceedings of the IEEE, vol. 90, pp. 1-16, 2002.
    [14] T. Palacios, U. K. Mishra, “AlGaN/GaN High Electron Mobility Transistors,” Nitride Semiconductor Devices: Principles and Simulation, pp. 213-233, 2007.
    [15] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation,” IEEE Election Device Letters, Vol. 28, No. 7, pp. 549–551, 2007.
    [16] N. Harada, Y. Hori, N. Azumaishi, K. Ohi, and T. Hashizume, “Formation of recessed-oxide gate for normally-off AlGaN/GaN high electron mobility transistors using selective electrochemical oxidation,” Appl. Phys. Express, Vol. 4, pp. 021002-1—021002-3, 2011.
    [17] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, “Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Trans, Electron Device, Vol. 54, pp. 3393-3399, 2007.
    [18] E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, “Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement,” IEEE Trans. on Electron Devices., Vol. 55, pp. 3354–3358, 2008.
    [19] Jie Liu, Yugang Zhou, Jia Zhu, Kei May Lau, and Kevin J. Chen, “AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement,” IEEE Election Device Letters, Vol. 27, pp. 10–12, 2006.
    [20] Pil Sung Park, Digbijoy N. Nath, Sriram Krishnamoorthy, and Siddharth Rajan, “Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization,” Appl. Phys. Lett., Vol. 100, 063507–1—063507–3, 2012.
    [21] T. Oka and T. Nozawa, “AlGaN/GaN recessed MIS-Gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” IEEE Election Device Letters, Vol. 29, No. 7, pp. 668–670, 2008.
    [22] F. Bernardini, “Nitride Semiconductor Devices: Principles and Simulation,” edited by J. Piprek, pp. 4968, 2007.
    [23] Thamm, O. Brandt, J.Ringling, A. Trampert, and K. H. Ploog, “Optical properties of heavily doped GaN/(Al,Ga)N multiple quantum wells grown on 6H-SiC(0001) by reactive molecular-beam epitaxy,” Phys. Rev. B, Vol. 61, pp. 16025-16028, 2000.
    [24] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., Vol. 100, pp. 023522, 2006.
    [25] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, pp. 3222-3233, 1999.
    [26] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., Vol. 89, pp. 5815-5875, 2001.
    [27] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, pp. 1246-1248, 2002.
    [28] F. Bernardini, “Spontaneous and piezoelectric polarization: Basic theory vs. practical recipes,” in Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, pp. 49-68, 2007.
    [29] Chih-Teng Liao, “Numerical Study on Blue InGaN Light-Emitting Diodes with Asymmetric Active Region,” 2009.
    [30] T. T Mnatsakanova, M. E Levinshteinb, L. I Pomortsevaa, S. N Yurkova, G. S Siminc and M A. Khanc, “Carrier mobility model for GaN,” Solid-State Electronics, Vol. 47, pp. 111–115, 2003.
    [31] S. M. Zse., “Physics of semiconductor devices,” John Wiley & Sons, 2nd edition, 1981.
    [32] S. Selberherr, “Analysis and Simulation of Semiconductor Devices,” Springer-Verlag, Wien-New York, 1984.
    [33] W. N. Grant, “Electron and hole ionization rates in epitaxial silicon at high electric fields,” Solid-State Elect., Vol. 16, pp. 1189–1203, 1973.
    [34] C. R. Crowell and S. M. Sze, “Temperature Dependence of Avalanche Multiplication in Semiconductors,” Appl. Phys. Lett., Vol. 9, pp. 242–244, 1966.
    [35] I. H. Oguzman, E. Bellotti, K. F. Brennan, J. Kolnik, R. Wang, and P. P. Ruden, “Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN,” J.Appl. Phys. 81, pp. 7827–34, 1997.
    [36] G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, and M. Asif Khan, X. Hu, A. Tarakji, R. Gaska, and M. S. Shur, “SiO2/AlGaN/InGaN/GaN MOSDHFETs,” IEEE Electron Device Lett., Vol. 23, 458-460, 2002.
    [37] X. Hu, A. Koudymov, G. Simon, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska, “Si3N4/AlGaN/GaN–metal–insulator–semiconductor hetero- structure field–effect transistors,” Appl. Phys. Lett. Vol. 79, 2832-2834, 2000.
    [38] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric,” Appl. Phys. Lett. Vol. 83, 2952-2954, 2003.
    [39] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron- mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., Vol. 86, 063501-1—063501-3, 2005.
    [40] www.crosslight.com, user’s manual.
    [41] R. A. Smith, “Semiconductors” Cambridge University Press, 2nd edition, 1978.
    [42] D. Bednarczyk and J. Bednarczyk, “The approximation of the fermi-dirac integral F1∕2(η),” Physics Letters A, Vol.64, pp. 409–410, 1978.

    無法下載圖示 本全文未授權公開
    QR CODE