簡易檢索 / 詳目顯示

研究生: 黃嘉聖
Jia-Sheng Huang
論文名稱: 二氧化鈦奈米管應用於染料敏化太陽能電池之研究
Application of TiO2 Nanotube on Dye-Sensitized Solar Cells
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 二氧化鈦奈米管染料敏化太陽能電池電化學法
英文關鍵詞: TiO2 nanotube, Dye-sensitized solar cells, Electrochemical
論文種類: 學術論文
相關次數: 點閱:231下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以純度鈦箔片(99.7%)為陽極,白金(Pt)為陰極,於乙二醇(Ethylene Glycol, EG)、氟化銨(Ammonium Fluoride, NH4F)及去離子水(Deionized water, DI)為電解液,以定電壓之陽極處理方式,製備出二氧化鈦奈米管,期助於染料敏化太陽電池的效率提昇。
    使用染料為N719,入射光強度為100 mW/cm2情況下,當管長為30 μm時,測量出最高的光電轉換效率,其短路電流Jsc為11.30 mA/cm2、開路電壓Voc為0.71 V、填充因子FF為0.48、轉換效率η為3.92%。

    In the study, TiO2 nanotube was manufactured by anodization with electrolyte of mixed solution of ethylene glycol (EG), ammonium fluoride (NH4F) and DI water, high purity titanium (99.7%) as anode and platinum as cathode, dye-sensitized solar cells contribute to efficiency.
    By sensitizing the anode with N719 dye and exposing under a light which light intensity is 100 mW/cm2, the length for 30 μm which measured by the highest photoelectric conversion efficiency, the Jsc = 11.30 mA/cm2, Voc = 0.71 V, FF = 0.48, η = 3.92%.

    目錄 中文摘要……….………………………………………………………………I 英文摘要………………………………………………………………………II 目錄…………………………………………………………………………III 圖目錄……………………………………………………………………..….V 表目錄…………………………………………………………………..….VIII 第一章 緒論……………………………………………………..……………1 1-1 前言……………………..………………………………………………1 1-2 太陽能電池簡介…………………………………….………………….2 1-3 研究動機及目的…………..……………………………………………4 第二章 理論探討與文獻回顧………………………………..……..………5 2-1 染料敏化太陽能電池之工作原理………………………..……………5 2-2 染料敏化太陽能電池之結構組成………………….………………….9 2-2-1 工作電極………………………………….…………..………9 2-2-2 光敏染料………………………………...…………………12 2-2-3 電解液…………………………………………….………..14 2-2-4 對極電極…………………………………………………...17 2-3 染料敏化太陽能電池之效能轉換…………..………………………19 第三章 實驗設計與規劃………………………………………..…….……21 3-1 實驗流程圖……………………………………………………………21 3-2 實驗材料………………………………...…………………………22 3-3 實驗製作步驟…………………………………………………………23 3-3-1 前處理…………………………………………………..…23 3-3-2 電化學處理……………………………………………..…24 3-3-3 熱處理及染料浸泡………………………………………..26 3-3-4 封裝製程………………………………………….……….27 第四章 實驗結果與討論………………….……………..…………………29 4-1 二氧化鈦奈米管微結構組織分析……………………………………29 4-2 二氧化鈦奈米管XRD及EDS檢測分析…………….……………….40 4-3 二氧化鈦奈米管UV-vis檢測分析……………………………………41 4-4 電解液厚度UV-vis檢測分析…………………………………………48 4-5 對極電極鍍膜厚度UV-vis檢測分析…………………………………49 4-6 二氧化鈦奈米管於染料敏化太陽能之效率影響……………………51 第五章 結論……………………………………………..………..…………58 參考文獻…………………………………………….….……………………59 圖目錄 圖1-1 各類太陽能電池之光電轉換效率………………..…………..….3 圖1-2 三種太陽能電池對溫度差異之效率影響圖………………………3 圖1-3 三種太陽能電池放置屋內外及日光燈之效率影響圖……………4 圖2-1 染料敏化太陽能電池之結構組成…………………………………6 圖2-2 電池元件內部反應機制……………………………………………6 圖2-3 影響元件效率之損失機制……………………………………..….8 圖2-4 元件反應電子傳遞速度示意圖………………………………..….8 圖2-5 奈米顆粒與奈米管之電子傳遞示意圖……..….….…………….11 圖2-6 不同長度3~33 μm之光伏特表現。(a)開路電壓(Voc);(b)短路電流(ISC);(c)填充因子(FF);(d)光電轉換效率(η)與管長的關係圖…………………………………...………………………………12 圖2-7 N3、N719及Black dye的染料結構式…………………………….13 圖2-8 N719及Black dye的UV-vis吸收光譜……………………………14 圖 2-9 MgO塗上TiO2於固態太陽能電池之光電流-電壓特性曲線與光電轉換效率圖………………………………………….……………..15 圖2-10 各種鍍鉑厚度製備元件之光電流-電壓特性曲線圖…………….18 圖3-1 實驗流程圖………………….….…………………………………21 圖3-2 原材之形貌……………………....…………………….…………23 圖3-3 熱處理條件曲線圖……………....……………………………….23 圖3-4 前處理完成之試片…………….……………………...…………23 圖3-5 電化學處理之示意圖…………………………………….……….25 圖3-6 電化學處理之完成試片……………………………………..……25 圖3-7 TiO2 nanotube表面及剖面之微觀影像……...….…………25 圖3-8 熱處理條件曲線圖……………………………………..…………26 圖3-9 熱處理完成之試片………………………………………….…….26 圖3-10 TiO2 nanotube有效面積為25 mm2……….……………….…26 圖3-11 元件組裝示意圖……………………………………………..……28 圖3-12 元件封裝分解圖…………….…...……………………………28 圖4-1 以氟化銨為電解液所成TiO2 nanotube巨觀及微觀影像………29 圖4-2 以酸性氟化銨為電解液所成TiO2 nanotube巨觀及微觀影像….29 圖4-3 以0.25 wt.% NH4F + 1 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……30 圖4-4 以0.5 wt.% NH4F + 1 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……31 圖4-5 以0.75 wt.% NH4F + 1 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……32 圖4-6 以0.25 wt.% NH4F + 2 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……33 圖4-7 以0.5 wt.% NH4F + 2 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……34 圖4-8 以0.75 wt.% NH4F + 2 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……35 圖4-9 以0.25 wt.% NH4F + 3 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……36 圖4-10 以0.5 wt.% NH4F + 3 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……37 圖4-11 以0.75 wt.% NH4F + 3 vol.% H2O為電解液,改變成長時間,(a)(c)(e)為表面及(b)(d)(f)為剖面之微觀影像..…………...……38 圖4-12 熱處理前後之XRD頻譜圖………..….………………....….…40 圖4-13 EDS檢測位置……………….………….………………...….…40 圖4-14 TiO2 nanotube之成分分析圖….………………………...…40 圖4-15 TiO2 nanotube之成分比例…….………………………..……40 圖4-16 0.25 wt.% NH4F + 1 vol.% H2O為電解液,時間對吸附之影響….41 圖4-17 0.5 wt.% NH4F + 1 vol.% H2O為電解液,時間對吸附之影響..42 圖4-18 0.75 wt.% NH4F + 1 vol.% H2O為電解液,時間對吸附之影響….42 圖4-19 0.25 wt.% NH4F + 2 vol.% H2O為電解液,時間對吸附之影響….43 圖4-20 0.5 wt.% NH4F + 2 vol.% H2O為電解液,時間對吸附之影響..43 圖4-21 0.75 wt.% NH4F + 2 vol.% H2O為電解液,時間對吸附之影響….44 圖4-22 0.25 wt.% NH4F + 3 vol.% H2O為電解液,時間對吸附之影響….44 圖4-23 0.5 wt.% NH4F + 3 vol.% H2O為電解液,時間對吸附之影響..45 圖4-24 0.75 wt.% NH4F + 3 vol.% H2O為電解液,時間對吸附之影響….45 圖4-25 管長為20 μm及30 μm對浸泡染料時間之影響………..…..…46 圖4-26 不同管長之TiO2 nanotube對染料吸收影響…………..………47 圖4-27 不同電解液厚度與空白玻璃之穿透率影響…….…….…………48 圖4-28 空白玻璃與導電玻璃之穿透率…………………………..………49 圖4-29 鍍鉑厚度為10 nm之穿透率……………………..…………….…50 圖4-30 不同鍍鉑厚度之穿透率…………………………………..………50 圖4-31 Pt/FTO對不同電化學成長時間之光電流-電壓特性曲線....…52 圖4-32 Pt/ITO對不同電化學成長時間之光電流-電壓特性曲線.………52 圖4-33 不同度鉑厚度對元件之光電流-電壓特性曲線…….....………53 圖4-34 不同度鉑厚度對元件之入射光電子轉換效率曲線…….….…54 圖4-35 (a) Voc;(b) Jsc;(c) FF;(d) η與TiO2 nanotube管長關係圖…..……57 圖4-36 不同TiO2 nanotube管長之光電流-電壓特性曲線……….……57 表目錄 表2-1 三種TiO2晶體結構之物理性質.….………………………………..9 表2-2 各種鍍鉑厚度對於轉換效率之影響……………………….…..…18 表3-1 本實驗所使用材料規格………..………………………………..22 表3-2 蝕刻條件設定…………..………………………………………..23 表3-3 電化學條件設定………………..………………………………..25 表3-4 染料浸泡條件設定……………….……………………………...26 表3-5 電解液條件設定……………………………………….………...27 表4-1 以NH4F + H2O + EG電解液為主,NH4F、H2O及時間為可變參數…………………………………………………………………..39 表4-2 各參數所製備出TiO2 nanotube之結果表…………………….39 表4-3 Pt/FTO對不同電化學成長時間之比較……………..….………51 表4-4 Pt/ITO對不同電化學成長時間之比較……………..….………51 表4-5 管長30 μm對不同鍍鉑厚度之比較..….…………………………53 表4-6 不同TiO2 nanotube管長之元件效率影響…………………… 55

    [1] M. A. Green, K. Emery, Y. H., W. Warta, ”Solar cell efficiency tables (version 33)”, progress in photovoktaics: research and applications, 17 (2009) 85-94.
    [2] G. Fuhrmann, A. Bamedi, M. Obermaier, S. Rosselli, R. Ogura, K. Noda, G. Nelles, (2009, April), 3rd International conference on the industrialisation of DSC DSC-IC 09, Nara Prefectural New Public Hall Nara, Japan.
    [3] B. O'Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737.
    [4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2Bis(2, 2’-bi-charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc. 115 (1993) 6382.
    [5] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent- potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44 (1996) 119-155.
    [6] P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Grätzel, “Nanocrystalline electrochromic displays”, Displays 20 (1999) 137-144.
    [7] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, ”New architectures for dye-sensitized solar cells”, Chem. Eur. J., 14 (2008) 4458.
    [8] E. W. McFarland, J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature, 421 (2003) 616-618.
    [9] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, “Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics“, Adv. Mater. 12 (2000) 1263-1267.
    [10] I. Bedja, S. Hotchandani, P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with Bis(2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) complex” J. Phys. Chem. A, 98 (1994) 4133-4140.
    [11] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48 (2003) 53-229.
    [12] K. M. Reddy, S. V. Manorama, A. R. Reddy, ”Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. and Phy., 78 (2003) 239-245.
    [13] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, 20 (2004) 2900-2907.
    [14] C.C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, “Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells”, J. Phys. Chem. C, 112 (2008) 19151.
    [15] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, “Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons”, J. Am. Chem. Soc., 138 (2008) 13364-13372.
    [16] 林進榮,游文岳,簡淑華,二氧化鈦奈米管陣列薄膜用於染料敏化太陽能電池之研究,化工期刊,第56卷,第二期,2009,第16-29頁。
    [17] 李陸玲,陳建仲,刁維光,太陽能電池的基本原理與元件最佳化策略研究,化工期刊,第56卷,第二期,2009,第3-15頁。
    [18] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107 (2003) 8981-8987.
    [19] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science 4 (1999) 314-321.
    [20] H. Arakawa, K. Sayama, K. Hara, H. Sugihara, T. Yamaguchi, M. Yanagida, H. Kawauchi, T. Kashima, G. Fujihashi, S. Takano, “Improvement of efficiency of dye-sensitized solar cell –optimization of titanium oxide photoelectrode-“, 3rd World Conference on Photovoltaic Energy Conversion (2003) 11-18.
    [21] G. R. A. Kumara, S. Kaneko, M. Okuya, K. Tennakone,” Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor”, Langmuir, 18 (2002) 10493-10495.
    [22] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, “Fabrication of an efficient solid-state dye-sensitized solar cell”, Langmuir, 19 (2003) 3572-3574.
    [23] B. O'Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL‘NCS/CuSCN: initiation and potential mechanisms”, Chem. Mater., 10 (1998) 1501-1509.
    [24] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva, K. Tennakone, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide”, Sol. Energy Mater. Sol. Cells, 69 (2001) 195-199.
    [25] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency”, J. Photochem. Photobiolo. A: Chem., 164 (2004) 183-185.
    [26] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies“, Nature, 395 (1998) 583-585.
    [27] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, 295 (2002) 2425-2427.
    [28] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials”, Snyth. Met., 125 (2001) 279-287.
    [29] K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke, D. Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells”, Snyth. Met., 121 (2001) 1573-1574.
    [30] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes”, J. Phys. Chem. B, , 107 (2003) 4374-4381.
    [31] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, 70 (2001) 151-161.
    [32] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101 (1997) 2576-2582.
    [33] 伊艷紅,許澤輝,馮磊碩,楊書廷,李承斌,染料敏化太陽能電池對電極的研究發展,材料報導:綜述篇,第23卷,第5期,2009,第109-112頁。
    [34] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E.i Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, J. Electroan. Chem. 570 (2004) 257-263.
    [35] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, J. T. Hupp, “Advancing beyond current generation dye-sensitized solar cells”, Energy Environ. Sci., 1 (2008) 66-78.

    下載圖示
    QR CODE