研究生: |
黃嘉聖 Jia-Sheng Huang |
---|---|
論文名稱: |
二氧化鈦奈米管應用於染料敏化太陽能電池之研究 Application of TiO2 Nanotube on Dye-Sensitized Solar Cells |
指導教授: |
郭金國
Kuo, Chin-Guo |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二氧化鈦奈米管 、染料敏化太陽能電池 、電化學法 |
英文關鍵詞: | TiO2 nanotube, Dye-sensitized solar cells, Electrochemical |
論文種類: | 學術論文 |
相關次數: | 點閱:231 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以純度鈦箔片(99.7%)為陽極,白金(Pt)為陰極,於乙二醇(Ethylene Glycol, EG)、氟化銨(Ammonium Fluoride, NH4F)及去離子水(Deionized water, DI)為電解液,以定電壓之陽極處理方式,製備出二氧化鈦奈米管,期助於染料敏化太陽電池的效率提昇。
使用染料為N719,入射光強度為100 mW/cm2情況下,當管長為30 μm時,測量出最高的光電轉換效率,其短路電流Jsc為11.30 mA/cm2、開路電壓Voc為0.71 V、填充因子FF為0.48、轉換效率η為3.92%。
In the study, TiO2 nanotube was manufactured by anodization with electrolyte of mixed solution of ethylene glycol (EG), ammonium fluoride (NH4F) and DI water, high purity titanium (99.7%) as anode and platinum as cathode, dye-sensitized solar cells contribute to efficiency.
By sensitizing the anode with N719 dye and exposing under a light which light intensity is 100 mW/cm2, the length for 30 μm which measured by the highest photoelectric conversion efficiency, the Jsc = 11.30 mA/cm2, Voc = 0.71 V, FF = 0.48, η = 3.92%.
[1] M. A. Green, K. Emery, Y. H., W. Warta, ”Solar cell efficiency tables (version 33)”, progress in photovoktaics: research and applications, 17 (2009) 85-94.
[2] G. Fuhrmann, A. Bamedi, M. Obermaier, S. Rosselli, R. Ogura, K. Noda, G. Nelles, (2009, April), 3rd International conference on the industrialisation of DSC DSC-IC 09, Nara Prefectural New Public Hall Nara, Japan.
[3] B. O'Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737.
[4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2Bis(2, 2’-bi-charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc. 115 (1993) 6382.
[5] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent- potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44 (1996) 119-155.
[6] P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Grätzel, “Nanocrystalline electrochromic displays”, Displays 20 (1999) 137-144.
[7] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, ”New architectures for dye-sensitized solar cells”, Chem. Eur. J., 14 (2008) 4458.
[8] E. W. McFarland, J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature, 421 (2003) 616-618.
[9] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, “Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics“, Adv. Mater. 12 (2000) 1263-1267.
[10] I. Bedja, S. Hotchandani, P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with Bis(2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) complex” J. Phys. Chem. A, 98 (1994) 4133-4140.
[11] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48 (2003) 53-229.
[12] K. M. Reddy, S. V. Manorama, A. R. Reddy, ”Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. and Phy., 78 (2003) 239-245.
[13] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, 20 (2004) 2900-2907.
[14] C.C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, “Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells”, J. Phys. Chem. C, 112 (2008) 19151.
[15] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, “Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons”, J. Am. Chem. Soc., 138 (2008) 13364-13372.
[16] 林進榮,游文岳,簡淑華,二氧化鈦奈米管陣列薄膜用於染料敏化太陽能電池之研究,化工期刊,第56卷,第二期,2009,第16-29頁。
[17] 李陸玲,陳建仲,刁維光,太陽能電池的基本原理與元件最佳化策略研究,化工期刊,第56卷,第二期,2009,第3-15頁。
[18] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107 (2003) 8981-8987.
[19] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science 4 (1999) 314-321.
[20] H. Arakawa, K. Sayama, K. Hara, H. Sugihara, T. Yamaguchi, M. Yanagida, H. Kawauchi, T. Kashima, G. Fujihashi, S. Takano, “Improvement of efficiency of dye-sensitized solar cell –optimization of titanium oxide photoelectrode-“, 3rd World Conference on Photovoltaic Energy Conversion (2003) 11-18.
[21] G. R. A. Kumara, S. Kaneko, M. Okuya, K. Tennakone,” Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor”, Langmuir, 18 (2002) 10493-10495.
[22] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, “Fabrication of an efficient solid-state dye-sensitized solar cell”, Langmuir, 19 (2003) 3572-3574.
[23] B. O'Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL‘NCS/CuSCN: initiation and potential mechanisms”, Chem. Mater., 10 (1998) 1501-1509.
[24] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva, K. Tennakone, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide”, Sol. Energy Mater. Sol. Cells, 69 (2001) 195-199.
[25] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency”, J. Photochem. Photobiolo. A: Chem., 164 (2004) 183-185.
[26] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies“, Nature, 395 (1998) 583-585.
[27] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, 295 (2002) 2425-2427.
[28] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials”, Snyth. Met., 125 (2001) 279-287.
[29] K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke, D. Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells”, Snyth. Met., 121 (2001) 1573-1574.
[30] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes”, J. Phys. Chem. B, , 107 (2003) 4374-4381.
[31] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, 70 (2001) 151-161.
[32] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101 (1997) 2576-2582.
[33] 伊艷紅,許澤輝,馮磊碩,楊書廷,李承斌,染料敏化太陽能電池對電極的研究發展,材料報導:綜述篇,第23卷,第5期,2009,第109-112頁。
[34] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E.i Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, J. Electroan. Chem. 570 (2004) 257-263.
[35] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, J. T. Hupp, “Advancing beyond current generation dye-sensitized solar cells”, Energy Environ. Sci., 1 (2008) 66-78.