簡易檢索 / 詳目顯示

研究生: 林羿志
Lin, Yi-Chih
論文名稱: 應用局部定位系統於三維訓練負荷之研究
The Study of the Local Positioning System to Measure Three-dimensional Training Load
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 許維君 翁梓林 劉強 何金山
口試日期: 2021/07/07
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 持拍運動訓練負荷運動強度局部定位系統慣性感測器
英文關鍵詞: racket sport, training load, intensity, local positioning system, IMU
DOI URL: http://doi.org/10.6345/NTNU202100873
論文種類: 學術論文
相關次數: 點閱:163下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 局部定位系統 (Local positioning system, LPS) 已被廣泛用於追蹤選手的位移數據,量化身體活動量,以及比賽時的戰術評估。LPS可作為客觀獲取選手行為訊息的工具,像是量化團隊訓練時的外在負荷。目的:本研究目的應用局部定位系統 (LPS) 結合慣性感測器 (IMU) 的運動員追蹤系統,評估訓練的內在與外在負荷關係,觀察外在負荷預測內在負荷的解釋力,進而探討LPS結合 IMU 系統於室內場地量測外在負荷的應用性。方法:15名大專男子羽球校代表隊選手,左肩配戴Goalgo T1感測器 (LPS結合IMU),下背配戴Capture. U感測器,胸前配戴胸帶式心率感測器 (Polar H10) ,進行羽球單打與雙打模擬賽。LPS、IMU與心率同步收集資料,計算訓練衝量值 (TRMP) 及運動自覺強度 (RPE) 分數,並以加速度計算Player Load與三軸向負荷。結果:本研究結果顯示單打與雙打於負荷、強度、移動距離及速度達顯著性差異 (p <.05)。單雙打的的移動距離與Banister’s TRIMP達顯著高度相關 (r= .837, r= .854 , p <.05),逐步迴歸分析對單打的預測力為70% (R2= .700),對雙打的預測力為73% (R2=.730)。單打的移動距離與session-RPE達顯著高度相關 (r= .748, p <.05),雙打的逐步迴歸分析垂直負荷與速度對session-RPE的預測力為75% (R2= .748)。結論:LPS結合IMU追蹤選手在場上的水平移動情形與垂直負荷值,可作為預測羽球專項訓練過程的TRIMP,監控選手的活動情形及量化室內三維訓練負荷。

    Local positioning system (LPS) has been widely used to track the displacement data of players, quantify the amount of physical activity, and tactical evaluation during the game. LPS can be used as a tool to objectively obtain player behavior information, such as quantifying the external training load during team sports. Purpose: The purpose of this research was to apply the local positioning system (LPS) combined with the inertial sensor (IMU) to evaluate the relationship between internal and external training load, and observe the ability of external training load to predict internal training load. Method: Fifteen male college badminton team members wore a Goalgo T1 sensor (LPS combined with IMU) on their left shoulder, Capture. U sensors on their lower back and Polar H10 heart rate belt on their chest. Data was collected synchronously with LPS, IMU, and heart rate for badminton singles and doubles simulation games. Training impulse (TRMP), rating of perceived exertion scores (RPE), calculated Player Load and tri-axial load with acceleration were determined. Results: The results of this study showed that singles and doubles had significant differences in load, intensity, moving distance, and speed (p <.05). The moving distance of singles and doubles was significantly highly correlated with Banister's TRIMP (r= .837, r= .854, p <.05). The stepwise regression analysis had a predictive capacity of 70% for singles and 73% for doubles (R2= .700, R2=.730). The moving distance of singles was significantly highly correlated with session-RPE (r= .748, p <.05), in which the stepwise regression analysis of doubles vertical load and speed had 75% predictive capacity for session-RPE (R2= .748). Conclusion: LPS combined with IMU can be used to track players' horizontal movement and vertical training load on the court. It also can be used to predict TRIMP during specific training process of badminton, and to monitor the player's activity and quantify the indoor three-dimensional training load.

    第壹章 緒論1 第一節 前言1 第二節 問題背景3 第三節 研究目的4 第四節 研究假設4 第五節 研究範圍與限制4 第六節 名詞操作定義5 第七節 研究之重要性5 第貳章 文獻探討6 第一節 運動員追蹤系統6 第二節 訓練監控與負荷關係9 第三節 訓練負荷的評估方式12 第四節 文獻總結16 第參章 實驗方法17 第一節 研究對象17 第二節 實驗設備17 第三節 實驗流程20 第四節 資料收集與方析23 第五節 統計方法25 第肆章 結果26 第一節 單打與雙打差異26 第二節 IMU不同位置關係28 第三節 內在與外在負荷關係29 第四節 單雙打的訓練負荷與強度32 第五節 逐步迴歸分析TRIMP與外在負荷35 第伍章 討論39 第一節 內在與外在負荷關係39 第二節 專項特性的負荷與強度41 第三節 LPS結合IMU之應用43 第陸章 結論46 參考文獻47 附錄一 受試者基本資料表56 附錄二 單打的內在與外在負荷實驗結果57 附錄三 雙打的內在與外在負荷實驗結果58 附錄四 受試者實驗須知59 附錄五 受試者同意書60

    王鈞逸、鄭景峰 (2010)。運動訓練量的監控:訓練衝量。中華體育季刊,24(1),138-147。doi:10.6223/qcpe.2401.201003.2015

    相子元、石又、何金山 (2012)。感測科技於運動健康科學之應用。體育學報,45(1),1-12。

    詹華蓁、江杰穎 (2017)。 RPE 訓練衝量法在運動訓練與監控之應用:系統性回顧。運動表現期刊,4(2),87-98。doi:10.3966/240996512017120402003

    錢薇娟、蔡琪揚、方麒堯、陳韋翰 (2020)。局部定位系統結合 IMU 在量測籃球運動表現與負荷之應用。運動表現期刊, 7(1), 29-44。

    鄧碧珍、戴沁琳、錢薇娟、蔡琪揚、陳仕佳 (2021)。以運動員追蹤系統量化大專籃球員半場及全場攻防之身體負荷量。華人運動生物力學期刊,18(1),19-25。

    Abdullahi, Y., Coetzee, B., & van den Berg, L. (2019). Relationships between results of an internal and external match load determining method in male, singles badminton players. Journal of Strength and Conditioning Research, 33(4), 1111-1118. doi:10.1519/JSC.0000000000002115

    Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors (Basel, Switzerland), 16(5), 707. doi:10.3390/s16050707

    Alexandre, D., Silva, C. D. d., Hill-Haas, S., Wong, D. P., Natali, A. J., Lima, J. R. P. D., . . . Karim, C. (2012). Heart rate monitoring in soccer: interest and limits during competitive match play and training, practical application. Journal of Strength and Conditioning Research, 26(10), 2890-2906. doi:10.1519/JSC.0b013e3182429ac7

    Andrew, M. E., Shengqiao, L., Wactawski-Wende, J., Dorn, J. P., Mnatsakanova, A., Charles, L. E., . . . Sharp, D. S. (2013). Adiposity, muscle, and physical activity: predictors of perturbations in heart rate variability. American Journal of Human Biology, 25(3), 370-377. doi:10.1002/ajhb.22379

    Barrett, S., Midgley, A. W., Towlson, C., Garrett, A., Portas, M., & Lovell, R. (2016). Within-match PlayerLoad™ patterns during a simulated soccer match: potential implications for unit positioning and fatigue management. International Journal of Sports Physiology and Performance, 11(1), 135-140. doi:10.1123/ijspp.2014-0582

    Beato, M., Jamil, M., & Devereux, G. (2018). Reliability of internal and external load parameters in recreational football (soccer) for health. Research in Sports Medicine, 26(2), 244-250. doi:10.1080/15438627.2018.1431532

    Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., . . . Cable, N. T. (2017). Monitoring athlete training loads: consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161-S2170. doi:10.1123/IJSPP.2017-0208

    Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. International Journal of Sports Physiology and Performance, 6(3), 311-321. doi:10.1123/ijspp.6.3.311

    Bredt, S., Chagas, M. H., Peixoto, G. H., Menzel, H. J., & de Andrade, A. G. P. (2020). Understanding player load: meanings and limitations. Journal of Human Kinetics, 71, 5-9. doi:10.2478/hukin-2019-0072

    Busbridge, A. R., Hamlin, M. J., Jowsey, J. A., Vanner, M. H., & Olsen, P. D. (2020). Running demands of provincial women's rugby union matches in New Zealand. Journal of Strength and Conditioning Research, Advance online publication. doi:10.1519/JSC.0000000000003579

    Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: a systematic review. Sensors (Basel), 18(3), 873. doi:10.3390/s18030873

    Cardinale, M., & Varley, M. C. (2017). Wearable training-monitoring technology: applications, challenges, and opportunities. International Journal of Sports Physiology and Performance, 12(Suppl 2), S255-S262. doi:10.1123/ijspp.2016-0423

    Clarke, A. C., Whitaker, M., & Sullivan, C. (2021). Evolving peak period, match movement, and performance demands in elite women’s Australian football. Journal of Science and Medicine in Sport, 24(7), 683-688. doi:10.1016/j.jsams.2021.01.006

    Coe, D., & Pivarnik, J. (2001). Validation of the CSA accelerometer in adolescent boys during basketball practice. Pediatric Exercise Science, 13(4), 373-379. doi:10.1123/pes.13.4.373

    Coelho, D. B., Coelho, L. G. M., Morandi, R. F., Junior, J. B. F., Marins, J. C. B., Prado, L. S., . . . Silami-Garcia, E. (2012). Effect of player substitutions on the intensity of second-half soccer match play. Brazilian Journal of Kinanthropometry and Human Performance, 14(2), 183-191. doi:10.5007/1980-0037.2012v14n2p183

    Corbett, D. M., Sweeting, A. J., & Robertson, S. (2019). A change point approach to analysing the match activity profiles of team-sport athletes. Journal of Sports Sciences, 37(14), 1600-1608. doi:10.1080/02640414.2019.1577941

    Cormack, S. J., Smith, R. L., Mooney, M. M., Young, W. B., & O'Brien, B. J. (2014). Accelerometer load as a measure of activity profile in different standards of netball match play. International Journal of Sports Physiology and Performance, 9(2), 283-291. doi:10.1123/ijspp.2012-0216

    Cornelissen, V. A., Verheyden, B., Aubert, A. E., & Fagard, R. H. (2010). Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. Journal of Human Hypertension, 24(3), 175-182. doi:10.1038/jhh.2009.51

    Cummins, C., Orr, R., O'Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Medicine (Auckland, N.Z.), 43(10), 1025-1042. doi:10.1007/s40279-013-0069-2

    di Prampero, P. E., Fusi, S., Sepulcri, L., Morin, J. B., Belli, A., & Antonutto, G. (2005). Sprint running: a new energetic approach. Journal of Experimental Biology, 208(Pt 14), 2809-2816. doi:10.1242/jeb.01700

    Folgado, H., Goncalves, B., & Sampaio, J. (2018). Positional synchronization affects physical and physiological responses to preseason in professional football (soccer). Research in Sports Medicine, 26(1), 51-63. doi:10.1080/15438627.2017.1393754

    Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring training loads: the past, the present, and the future. International Journal of Sports Physiology and Performance, 12(Suppl 2), S22-S28. doi:10.1123/ijspp.2016-0388

    Fox, J. L., Scanlan, A. T., & Stanton, R. (2017). A review of player monitoring approaches in basketball: current trends and future directions. Journal of Strength and Sonditioning Research, 31(7), 2021-2029. doi:10.1519/JSC.0000000000001964

    Gabbett, T. J. (2016). The training-injury prevention paradox: should athletes be training smarter and harder? British Journal of Sports Medicine, 50(5), 273-280. doi:10.1136/bjsports-2015-095788

    García-Santos, D., Pino-Ortega, J., García-Rubio, J., Vaquera, A., & Ibáñez, S. J. (2019). Internal and external demands in basketball referees during the U-16 European Women’s Championship. International Journal of Environmental Research and Public Health, 16(18), 3421. doi:10.3390/ijerph16183421

    Graham, S., Zois, J., Aughey, R., & Duthie, G. (2020). The peak player load of state-level netball matches. Journal of Science and Medicine in Sport, 23(2), 189-193. doi:10.1016/j.jsams.2019.09.014

    Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine (Auckland, N.Z.), 44 Suppl 2, 139-147. doi:10.1007/s40279-014-0253-z

    Heishman, A., Peak, K., Miller, R., Brown, B., Daub, B., Freitas, E., & Bemben, M. (2020). Associations between two athlete monitoring systems used to quantify external training loads in basketball players. Sports (Basel), 8(3), 33. doi:10.3390/sports8030033

    Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine and Science in Sports and Exercise, 36(6), 1042-1047. doi:10.1249/01.mss.0000128199.23901.2f

    Impellizzeri, F. M., Rampinini, E., & Marcora, S. M. (2005). Physiological assessment of aerobic training in soccer. Journal of Sports Sciences, 23(6), 583-592. doi:10.1080/02640410400021278

    Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and External Training Load: 15 Years On. International Journal of Sports Physiology and Performance, 14(2), 270-273. doi:10.1123/ijspp.2018-0935

    James, C., Dhawan, A., Jones, T., Pok, C., Yeo, V., & Girard., O. (2021). Minimal agreement between internal and external training load metrics across a 2-wk training microcycle in elite squash. Journal of Sports Science and Medicine, 20, 101-109. doi:10.52082/jssm.2021.101

    Jeukendrup, A., & VanDiemen, A. (1998). Heart rate monitoring during training and competition in cyclists. Journal of Sports Sciences, 16 Suppl, 91-99. doi:10.1080/026404198366722

    LaMonte, M. J., Lewis, C. E., Buchner, D. M., Evenson, K. R., Rillamas-Sun, E., Di, C., . . . LaCroix, A. Z. (2017). Both light intensity and moderate‐to‐vigorous physical activity measured by accelerometry are favorably associated with cardiometabolic risk factors in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) study. Journal of the American Heart Association, 6(10), e007064. doi:10.1161/jaha.117.007064

    Leser, R., Baca, A., & Ogris, G. (2011). Local positioning systems in (game) sports. Sensors (Basel), 11(10), 9778-9797. doi:10.3390/s111009778

    Liu, T.-H., Chen, W.-H., Shih, Y., Lin, Y.-C., Yu, C., & Shiang, T.-Y. (2021). Better position for the wearable sensor to monitor badminton sport training loads. Sports Biomechanics. doi:10.1080/14763141.2021.1875033

    Lutz, J., Memmert, D., Raabe, D., Dornberger, R., & Donath, L. (2019). Wearables for integrative performance and tactic analyses: opportunities, challenges, and future directions. International Journal of Environmental Research and Public Health, 17(1), 59. doi:10.3390/ijerph17010059

    Malone, J. J., Lovell, R., Varley, M. C., & Coutts, A. J. (2017). Unpacking the black box: applications and considerations for using GPS devices in sport. International Journal of Sports Physiology and Performance, 12(Suppl 2), 18-26. doi:10.1123/ijspp.2016-0236

    Mei, C., Gao, F., & Li, Y. (2019). A determination method for gait event based on acceleration sensors. Sensors (Basel, Switzerland), 19(24), 5499. doi:10.3390/s19245499

    Mendes, J. J., Jr, Vieira, M. E., Pires, M. B., & Stevan, S. L., Jr. (2016). Sensor fusion and smart sensor in sports and biomedical applications. Sensors (Basel, Switzerland), 16(10), 1569. doi:10.3390/s16101569

    Miguel, M., Oliveira, R., Loureiro, N., García-Rubio, J., & Ibáñez, S. J. (2021). Load measures in training/match monitoring in soccer: a systematic review. International Journal of Environmental Research and Public Health, 18(5), 2721. doi:10.3390/ijerph18052721

    Montgomery, P. G., Pyne, D. B., & Minahan, C. L. (2010). The physical and physiological demands of basketball training and competition. International Journal of Sports Physiology and Performance, 5(1), 75-86. doi:10.1123/ijspp.5.1.75

    Nagano, Y., Sasaki, S., Higashihara, A., & Ichikawa, H. (2020). Movements with greater trunk accelerations and their properties during badminton games. Sports Biomechanics, 19(3), 342-352. doi:10.1080/14763141.2018.1478989

    Olthof, S., Frencken, W., & Lemmink, K. (2019a). A match-derived relative pitch area facilitates the tactical representativeness of small-sided games for the official soccer match. Journal of Strength and Conditioning Research, 33(2), 523-530. doi:10.1519/JSC.0000000000002978

    Olthof, S., Frencken, W., & Lemmink, K. (2019b). When something is at stake: Differences in soccer performance in 11 vs. 11 during official matches and training games. Journal of Strength and Conditioning Research, 31(1), 167-173. doi:10.1519/JSC.0000000000002936

    Perri, T., Norton, K. I., Bellenger, C. R., & Murphy, A. P. (2018). Training loads in typical junior-elite tennis training and competition: implications for transition periods in a high-performance pathway. International Journal of Performance Analysis in Sport, 18(2), 327-338. doi:10.1080/24748668.2018.1475198

    Phomsoupha, M., & Laffaye, G. (2015). The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Medicine (Auckland, N.Z.), 45(4), 473-495. doi:10.1007/s40279-014-0287-2

    Randers, M. B., Nielsen, J. J., Bangsbo, J., & Krustrup, P. (2014). Physiological response and activity profile in recreational small-sided football: no effect of the number of players. Scandinavian Journal of Medicine and Science in Sports, 24 Suppl 1, 130-137. doi:10.1111/sms.12232

    Rico-Gonzalez, M., Los Arcos, A., Nakamura, F. Y., Moura, F. A., & Pino-Ortega, J. (2020). The use of technology and sampling frequency to measure variables of tactical positioning in team sports: a systematic review. Research in Sports Medicine, 28(2), 279-292. doi:10.1080/15438627.2019.1660879

    Sasaki, S., Nagano, Y., & Ichikawa, H. (2020). Differences in high trunk acceleration during single-leg landing after an overhead stroke between junior and adolescent badminton athletes. Sports Biomechanics, 1-16. doi:10.1080/14763141.2020.1740310

    Scanlan, A. T., Wen, N., Tucker, P. S., & Dalbo, V. J. (2014). The relationships between internal and external training load models during basketball training. Journal of Strength and Conditioning Research, 28(9), 2397-2405. doi:10.1519/JSC.0000000000000458

    Scott, B. R., Lockie, R. G., Knight, T. J., Clark, A. C., & Janse de Jonge, X. A. (2013). A comparison of methods to quantify the in-season training load of professional soccer players. International Journal of Sports Physiology and Performance, 8(2), 195-202. doi:10.1123/ijspp.8.2.195

    Scott, M. T., Scott, T. J., & Kelly, V. G. (2016). The validity and reliability of global positioning systems in team sport: a brief review. Journal of Strength and Conditioning Research, 30(5), 1470-1490. doi:10.1519/JSC.0000000000001221

    Serpiello, F. R., Hopkins, W. G., Barnes, S., Tavrou, J., Duthie, G. M., Aughey, R. J., & Ball, K. (2018). Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. Journal of Sports Sciences, 36(15), 1727-1733. doi:10.1080/02640414.2017.1411867

    Sievänen, H., & Kujala, U. M. (2017). Accelerometry-Simple, but challenging. Scandinavian Journal of Medicine and Science in Sports, 27(6), 574-578. doi:10.1111/sms.12887

    Sparks, M., Coetzee, B., & Gabbett, T. J. (2017). Internal and external match loads of university-level soccer players: a comparison between methods. Journal of Strength and Conditioning Research, 31(4), 1072-1077. doi:10.1519/JSC.0000000000001560

    Vanrenterghem, J., Nedergaard, N. J., Robinson, M. A., & Drust, B. (2017). Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Medicine (Auckland, N.Z.), 47(11), 2135-2142. doi:10.1007/s40279-017-0714-2

    Vázquez-Guerrero, J., Jones, B., Fernández-Valdés, B., Moras, G., Reche, X., & Sampaio, J. (2019). Physical demands of elite basketball during an official U18 international tournament. Journal of Sports Sciences, 37(22), 2530-2537. doi:10.1080/02640414.2019.1647033

    Wylde, M., Kumar, B., Yong, L. C., & Callaway, A. J. (2019). Axis specific player load to quantify lower limb biomechanical loading in adolescent badminton players. International Journal of Racket Sports Science, 1(1), 37-44.

    Yamamoto, H., Takemura, M., Iguchi, J., Tachibana, M., Tsujita, J., & Hojo, T. (2020). In-match physical demands on elite Japanese rugby union players using a global positioning system. BMJ Open Sport and Exercise Medicine, 6(1), e000659. doi:10.1136/bmjsem-2019-000659

    下載圖示
    QR CODE