簡易檢索 / 詳目顯示

研究生: 陳祐丞
Chen, Yu-Cheng
論文名稱: 氣候及地景對臺灣集水區逕流量之影響與評估
The Effects and Assessment of Climate and Landscape on Runoff in Taiwan Watersheds
指導教授: 李宗祐
Lee, Tsung-Yu
口試委員: 陳佳正
Chen, Chia-Jeng
韋煙灶
Wei, Yen-Tsao
李宗祐
Lee, Tsung-Yu
口試日期: 2024/01/15
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 159
中文關鍵詞: 集水區地景Budyko曲線分解法彈性法
英文關鍵詞: Watershed landscape, Budyko curve, decomposition method, elasticity method
DOI URL: http://doi.org/10.6345/NTNU202400197
論文種類: 學術論文
相關次數: 點閱:47下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候變化以及集水區環境的變遷都會對河川逕流量產生影響,而過度的流量變動可能對水資源產生衝擊。本研究以修正後的Budyko-Fu曲線,計算臺灣各個集水區11年滑動平均之地景參數m值,並透過曲線分解法,分別去量化氣候變化和集水區地景改變對於逕流量的影響。研究結果發現,臺灣集水區雨流關係良好,但多數集水區歷年的地景參數m值有上升的趨勢,表示集水區的儲水能力隨著時間而有所提升。曲線分解法的結果,有32個集水區,氣候變化對於流量影響為正,集水區地景對於流量影響為負,其中有21個集水區整體流量變化是增加,有11個集水區整體流量變化是減少。研究中發現,歷史土地利用(包含:森林面積、農地面積或都市面積的改變)變遷並無法解釋集水區地景m值的變化趨勢。部分集水區因為流量大於雨量或流量偏低使得估計的實際蒸發散量大於潛能蒸發散量而使得地景m值無法計算,表示水文收支研究在臺灣仍具有的挑戰。過往研究中利用長期水文觀測所得之單一m值,忽略了m逐漸在增加的現象,將高估未來的臺灣地表水資源。在未來降水不確定、集水區流量變化對於降水變化更加敏感下,對於將來水資源將是個重大挑戰。

    Climate change and environmental change in watershed can both affect the runoff, further resulting in some problem on water resources. This study uses the modified Budyko-Fu curve to calculate the landscape parameter (m values) for 11-year moving windows averages in various watersheds across Taiwan. Through Budyko-Fu curve decomposition analysis, it quantifies the impacts of climate change and landscape changes on runoff separately. The research findings reveal that the rainfall-runoff relationship in Taiwan's watersheds is fairly good. However, the majority of watersheds exhibit an increasing trend in the m values, indicating an increase in the watershed's water storage capacity over time. According to the results of curve decomposition analysis, there are the 32 watersheds where climate change has a positive impact on runoff while landscape has a negative impact. Among them, 21 watersheds show an overall increase in runoff, while 11 watersheds exhibit a decrease. It was found that historical land use changes (including alterations in forest, agricultural land, or urban) could not explain the changes of m values. In some watersheds, the estimated actual evapotranspiration exceeds potential evapotranspiration at the condtion of very low runoff or runoff is higher than precipitation, making the calculation of m values impossible. This indicates the persisting challenges in hydrological budget studies in Taiwan. In past studies, the use of long-term hydrological observation to calculate a single m value has overlooked the gradual increase in m, leading to an overestimation of future surface water resources in Taiwan. With future precipitation uncertainties and increased sensitivity of watershed runoff changes to precipitation variations, addressing future water resource management will pose a significant challenge.

    謝辭 i 摘要 ii Abstract iii 目錄 iv 表目錄 vii 附表目錄 vii 圖目錄 viii 附圖目錄 xi 第一章 緒論 1 第一節 集水區水文歷程與訊號 1 第二節 研究動機 2 第三節 研究目的 3 第二章 文獻回顧 5 第一節 配對集水區試驗之相關研究 5 2.1.1 配對集水區試驗的歷史與特點 5 2.1.2 配對集水區試驗的限制 6 第二節 全世界氣候與地景對於水文訊號之相關研究 6 2.2.1 vegetation-to-bedrock模型 6 2.2.2 LULCC對於河川水文特徵的關係 7 2.2.3 Budyko 公式 9 2.2.4 Budyko曲線分解法 11 2.2.5 Budyko曲線彈性法 13 第三節 臺灣氣候與地景對於水文訊號之相關研究 16 2.3.1 區域尺度 16 2.3.2 全臺尺度 17 第三章 研究區與研究方法 19 第一節 研究區資料 19 3.1.1 流量資料 19 3.1.2 降水資料 19 3.1.3 潛能蒸發散量資料 21 3.1.4 土地利用資料 22 第二節 研究方法 22 3.2.1 修正後的Budyko-Fu (1981)曲線 23 3.2.2 Budyko曲線分解法 26 3.2.3 Budyko曲線彈性法 27 3.2.4 趨勢分析 29 第三節 研究流程 30 第四章 研究結果 32 第一節 集水區各項指標的趨勢 32 4.1.1 降水、逕流、集水區地景的關係 32 4.1.2 集水區地景趨勢變化 35 第二節 曲線分解法 40 4.2.1 前後兩期集水區地景m值 41 4.2.2 前後兩期氣候與地景狀態在Budyko空間上之移動 42 4.2.3 氣候、地景對於集水區逕流量的變化 46 第三節 曲線彈性法 59 4.3.1 逕流彈性係數長期趨勢 59 第五章 討論 65 第一節 集水區地景m值變化的意義與影響 65 5.1.1 後期m值落在m=∞曲線以下或m值小於1的意義 65 5.1.2 地質、颱風和地震對於集水區地景m值的影響 68 5.1.3 集水區地景m值與土地利用的關係 72 5.1.4 集水區地景m值與水庫、攔河堰的關係 78 第二節 逕流彈性係數改變的原因 82 第三節 對未來水資源評估的影響 85 第六章 結論與建議 87 參考文獻 90 中文文獻 90 英文文獻 92 附錄 97

    宋健豪、廖學誠(2018),〈應用趨勢分析探討氣候變遷下太麻里溪流域的水文變化〉。《地理研究》,(68):49-71。
    李忠勳,、葉信富(2020),〈以 Budyko 架構探討氣候變遷與人為活動造成臺灣北部逕流量之變化〉。《農業工程學報》, 66(2):26-42。
    李明營(2021),〈2020/21年臺灣百年大旱原因分析〉,臺灣災害管理研討會(2021),141-148。
    邱繼成(2021),《利用Budyko framework評估現況與氣候變遷情境下臺灣各流域水資源之變化》。臺北:國立臺灣師範大學地理學系碩士論文。
    邱繼成、林冠州、李宗祐、王文誠(2021),〈應用網格化雨量資料建立臺灣各流域年尺度之雨量-流量關係〉。《地理研究》,(74):37-60。
    翁叔平、楊承道(2012),〈臺灣地區月降雨及溫度 1 公里網格資料庫之建立 (1960-2009) 及其在近未來 (2015-2039) 的氣候推估應用〉,《大氣科學》,第40卷(第4期):349-369。
    翁叔平、楊承道(2018),〈臺灣地區日降雨網格化資料庫(1960~2015)之建置與驗證〉,《臺灣水利》,第66卷(第4期):33-52。
    高雨瑄、許少華、汪中和、彭宗仁(2007),〈花蓮溪流域鳳林地區地表地下水之氫、氧同位素時空分布特徵〉。《農業工程學報》, 53(2):22-30。
    郭羿里(2023),《利用航空攝影測量探討有勝溪河道地形變化與斷流之研究,臺北:國立臺灣師範大學地理學系碩士論文。
    曹鈞、葉信富(2018),〈臺灣集集攔河堰的興建對濁水溪流域水文環境影響之研究〉。《臺灣鑛業》,70:18-29。
    陳玄芬、涂建翊(2017),〈以 TCCIP 資料分析臺灣降雨的氣候特徵與長期變化〉。《中國地理學會會刊》,(59):1-20。
    陳長榮(2014),《莫拉克風災後高屏溪攔河堰周邊地下水位之研究》。屏東:國立屏東科技大學土木工程學系碩士論文。
    陳信宇、葉信富(2021),〈以Budyko曲線分解法與氣候彈性法探討濁水溪沖積扇逕流量改變原因之研究〉,《中華水土保持學報》, 52(2):89-99。
    陳宣安(2012),《大安溪峽谷河川地形變遷之研究》。臺北:國立台灣大學地理環境資源學研究所碩士論文。
    陳聯光、游繁結、劉格非、林聖琪、柯明淳(2009),〈莫拉克重大崩塌災害歷程探討〉。《中華水土保持學報》,40:329-337。
    張良正、陳宇文(2013),地下水水文地質與補注模式研究-補注區劃設與資源量
    評估(1/4),國家科學及技術委員會(編號:102-5226904000-07-01 )。
    葉修豪(2023),《利用地球化學參數瞭解有勝溪斷流河段之水源及其交互作用》,臺北:國立臺灣師範大學地理學系碩士論文。
    經濟部水利署,
    https://www.wra.gov.tw/News_Content.aspx?n=3254&s=19385
    (2023/10/1瀏覽)
    經濟部水利署防災資訊網,
    https://fhy.wra.gov.tw/ReservoirPage_2011/StorageCapacity.aspx
    (2023/11/10瀏覽)
    臺灣氣候變遷推估資訊與調適知識平台,
    https://tccip.ncdr.nat.gov.tw/au_04_one.aspx?aid=20230101220916(2023/10/5瀏覽)
    謝志能(2003),《曾文溪及高屏溪流量關係式之研究》。臺南:國立成功大學水利及海洋工程學系碩士論文。
    Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9-10), 1529-1535.
    Andréassian, V., & Sari, T. (2019). On the puzzling similarity of two water balance formulas–Turc–Mezentsev vs. Tixeront–Fu. Hydrology and Earth System Sciences, 23(5), 2339-2350.
    Berghuijs, W. R., & Woods, R. A. (2016). Correspondence: Space-time asymmetry undermines water yield assessment. Nature communications, 7(1), 11603.
    Bosch, J. M., & Hewlett, J. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23.
    Brown, A. E., Western, A. W., McMahon, T. A., & Zhang, L. (2013). Impact of forest cover changes on annual streamflow and flow duration curves. Journal of Hydrology, 483, 39-50. doi: 10.1016/j.jhydrol.2012.12.031
    Budyko, M. I. (1974). Climate and life: Academic press.
    Chen, Y.-Y., Huang, W., Wang, W.-H., Juang, J.-Y., Hong, J.-S., Kato, T., & Luyssaert, S. (2019). Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9(1), 3643.
    Evaristo, J., & McDonnell, J. J. (2019). RETRACTED ARTICLE: Global analysis of streamflow response to forest management. Nature, 570(7762), 455-461.
    Fu, B. (1981). On the calculation of the evaporation from land surface. Scientia Atmospherica Sinica, 5(1), 23.
    Gray, S. T., & McCabe, G. J. (2010). A combined water balance and tree ring approach to understanding the potential hydrologic effects of climate change in the central Rocky Mountain region. Water Resources Research, 46(5).
    Gudmundsson, L., Greve, P., & Seneviratne, S. I. (2016). The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophysical Research Letters, 43(13), 6985-6994.
    Guzha, A., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49-67.
    Hewlett, J. D., Lull, H. W., & Reinhart, K. G. (1969). In defense of experimental watersheds. Water Resources Research, 5(1), 306-316.
    Hibbert, A. R. (1965). Forest treatment effects on water yield: Citeseer.
    IPCC. (2021). Climate Change 2021 Synthesis Report.
    Kendall, M. G. (1975). Rank Correlation Methods (4th ed.). London: Charles Griffin & Co.
    Kirchner, J. W., Berghuijs, W. R., Allen, S. T., Hrachowitz, M., Hut, R., & Rizzo, D. M. (2020). Streamflow response to forest management. Nature, 578(7794), E12-E15. doi: 10.1038/s41586-020-1940-6
    Malmer, A., Murdiyarso, D., Bruijnzeel, L., & Ilstedt, U. (2010). Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations. Global Change Biology, 16(2), 599-604.
    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
    Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323.
    Milly, P. (1994). Climate, soil water storage, and the average annual water balance. Water Resources Research, 30(7), 2143-2156.
    National Park Service
    https://www.nps.gov/subjects/climatechange/waterbalance.html
    (2023/3/20瀏覽)
    Ning, T., Li, Z., & Liu, W. (2017)。Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework。Hydrology and Earth System Sciences, 21(3), 1515-1526。
    Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163-1174.
    Roderick, M. L., & Farquhar, G. D. (2011). A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47(12).
    Rodriguez, D. A., Tomasella, J., & Linhares, C. (2010). Is the forest conversion to pasture affecting the hydrological response of Amazonian catchments? Signals in the Ji‐Paraná Basin. Hydrological Processes: An International Journal, 24(10), 1254-1269.
    Schaake, J. C. (1990). From climate to flow. Climate change and US water resources., 177-206.
    Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
    Stednick, J. D. (1996). Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology, 176(1-4), 79-95.
    Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. Henri Theil’s contributions to economics and econometrics: Econometric theory and methodology, 345-381.
    Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94
    Tsai, A.-Y., & Huang, W.-C. (2011). Impact of climate change on water resources in Taiwan. Terr. Atmos. Ocean. Sci., 22, 507-519, doi: 10.3319.
    Wang, C., Wang, S., Fu, B., & Zhang, L. (2016). Advances in hydrological modelling with the Budyko framework: A review. Progress in Physical Geography, 40(3), 409-430.
    Wang, D. (2012). Evaluating interannual water storage changes at watersheds in Illinois based on long‐term soil moisture and groundwater level data. Water Resources Research, 48(3).
    Wang, D., & Hejazi, M. (2011). Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 47(10).
    Wang, S., Fu, B.-J., He, C.-S., Sun, G., & Gao, G.-Y. (2011). A comparative analysis of forest cover and catchment water yield relationships in northern China. Forest Ecology and Management, 262(7), 1189-1198.
    Wang, Y., Wang, S., Wang, C., & Zhao, W. (2021). Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin. Journal of Hydrology, 600, 126536.
    Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., & Lei, Z. (2007). Analyzing spatial and temporal variability of annual water‐energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research, 43(4).
    Yurtseven, I., Serengil, Y., Gökbulak, F., Şengönül, K., Ozhan, S., Kılıç, U., Ozçelik, M. S. (2018). Results of a paired catchment analysis of forest thinning in Turkey in relation to forest management options. Science of the Total Environment, 618, 785-792.
    Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Liu, S. (2017). A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. Journal of Hydrology, 546, 44-59.
    Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Han, L. (2015). Global pattern for the effect of climate and land cover on water yield. Nature communications, 6(1), 5918.

    下載圖示
    QR CODE