簡易檢索 / 詳目顯示

研究生: 黃奕澂
Huang Yi Chang
論文名稱: 台灣族群帕金森氏症FBXO7 基因變異的分子遺傳及功能研究
Molecular Genetic and Functional Studies of FBXO7 Gene Variations in Taiwanese Parkinson’s Disease
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 53
中文關鍵詞: 帕金森氏症神經退化性疾病FBXO7 基因多型性點Y52C多巴胺
英文關鍵詞: Parkinson’s disease (PD), neurodegenerative disorder, FBXO7 gene, Y52C polymorphism, Dopamine
DOI URL: https://doi.org/10.6345/NTNU202205548
論文種類: 學術論文
相關次數: 點閱:243下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症主要為中腦黑質緻密區的多巴胺神經細胞缺失所引起的神經退化性疾病。FBXO7基因位於染色體22號q12-q13上,與家族性早發性帕金森氏症和錐狀體病症有相關。FBXO7蛋白由522個胺基酸組成,N端帶有ubiquitin-like fold、C端帶有F-box domain,為ubiquitin E3 ligase complex內的重要因子。本研究探討FBXO7基因變異與台灣族群帕金森氏症的相關性。首先針對家族性及早發性84位帕金森氏症病人進行FBXO7 cDNA定序分析,結果共發現二個兩個多型性點Y52C (c.155A>G)、I115M (c.345A>G)。進一步對所蒐集的帕金森氏症病人(516位)與性別、年齡相當的正常人(516位)進行Y52C、I115M的病例-對照組分析,結果顯示Y52C多型性G等位基因頻率在病人族群中明顯較正常人族群低,且和低帕金森氏症感受性相關(0.4% vs. 1.2%, P = 0.046)。進一步結合中國大陸數據(Luo et al., 2010),651位病人與716位正常人的病例-對照組分析結果亦顯示低帕金森氏症感受性(0.5% vs. 1.4%, P = 0.012)及低罹病機率(odds ratio: 0.33, 95% confidence interval: 0.12-0.77, P = 0.017)。目前已建構EGFP標記及V5-His和pcDNA5/FRT/TO的FBXO7 cDNA質體,表現於SH-SY5Y及HEK-293T細胞,進行次細胞分層、西方轉漬、螢光顯微鏡分析、蛋白穩定性、蛋白質體功能分析和神經纖維分析。本實驗希望可提供疾病診斷及遺傳諮詢的文獻。
    關鍵字: 帕金森氏症、神經退化性疾病、FBXO7 基因、多型性點Y52C

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by with loss of dopamine neurons in the SNc. The chromosome 22q12-q13 FBXO7 mutations have been identified in several families with early-onset parkinsonism and pyramidal tract signs. FBXO7 gene codes for a protein of 522 amino acids, with an ubiquitin-like fold in its N-terminal and an F-box in its C-terminal half. FBXO7 is a key component of an ubiquitin E3 ligase complex. This study investigates the FBXO7 variability in Taiwanese PD. By direct cDNA sequencing of 84 patients with familiar or early-onset PD, two amino acid changed variants Y52C (c.155A>G) and I115M (c.345A>G) were identified. To examine whether Y52C and I115M affect the risk of PD, PCR-RFLP test was developed to assess their frequency in a larger cohort of PD (n = 516) and age- and gender-matched controls (n = 516). We found The Y52C G allele frequency was notably lower in PD patients than the controls (0.4% vs. 1.2%, P = 0.046). After combining data from China (Luo et al., 2010), the Y52C G allele frequency is significantly different between PD (n = 651) and controls (n = 716) (0.5% vs. 1.4%, P = 0.012) and a significant decrease in risk of developing PD can be demonstrated (odds ratio: 0.33, 95% confidence interval: 0.12-0.77, P = 0.017). Cloning and expressing of cDNAs with Y52C in dopaminergic neuroblastoma SH-SY5Y cells and HEH-293T cell are currently ongoing to examine if Y52C affect FBXO7 localization, protein stability, proteasome activity and neurite outgrowth. The study may provide a reference for clinical diagnosis and genetic counseling.
    key words:Parkinson’s disease (PD)、neurodegenerative disorder、FBXO7 gene、Y52C polymorphism、Dopamine

    目錄.... I 中文摘要 ..V Abstract....... VI 圖表目錄 VIII 壹、緒論........ 1 一、帕金森氏症... 1 (一)臨床病徵..... 1 (二)神經病理學... 2 (三)致病原因..... 3 (四)致病途徑..... 4 二、帕金森氏症的遺傳分析.. 5 三、FBXO7基因... 7 (一) FBXO7的構造、表現與功能...... 7 (二) FBXO7基因變異與帕金森氏症.... 8 貳、研究目的.................... 9 參、研究材料與方法............... 10 一、FBXO7基因遺傳分析.............10 (一)研究樣品..................... 10 (二) FBXO7 cDNA增幅及定序 ........10 (三) FBXO7基因Y52C及I115M多型性分析...... 11 1.聚合酶連鎖反應(PCR)............ 11 2.限制酶片段長度多型性分析(RFLP).. 12 3.統計分析...................... 12 二、FBXO7基因Y52C多型性的功能分析……………………12 (一)細胞培養………………………………………………… 12 (二)重組質體的建構............... 13 1. pEGFP-N1-FBXO7.............. 13 2 . pcDNA3.1/V5-His-FBXO7...... 14 3 .pcDNA5/FRT/TO-FBXO7..........14 (三)轉染(transfection).......... 15 (四)次細胞分層................... 16 (五)西方轉滯法................... 17 (六)螢光顯微觀察..................17 (七)Flp-In SH-SY5Y細胞株培養......17 (八) 建立Flp-In SH-SY5Y- FBXO7-EGFP穩定細胞株……..18 (九)神經性狀分析..................19 肆、結果........................ 20 一、PD患者FBXO7基因突變.......... 20 二、Y52C、I115M多型性與台灣族群PD感受性.... 21 三、Y52C多型性之功能分析..........22 (一) EGFP標記的FBXO7 cDNA選殖.... 22 (二) V5-His標記的FBXO7 cDNA選殖...........22 (三) FBXO7-EGFP、FBXO7-V5-His融合蛋白的西方轉漬分析....22 (四) FBXO7-EGFP融合蛋白的時間週期分析......23 (五) FBXO7-EGFP融合蛋白的螢光顯微鏡觀察....23 四、誘導式SH-SY5Y細胞株建立...............23 (一).pcDNA5/FRT/TO質體建構...............24 (二). 建立Flp-In SH-SY5Y- FBXO7-EGFP穩定細胞株….24 (三).神經細胞性狀分析.....................25 伍、討論 26 一、FBXO7基因變異與台灣族群PD感受性........ 26 (二) FBXO7基因Y52C多型性的功能分析.........28 (三)誘導式SH-SY5Y神經性狀分析..............29 陸、參考文獻............................. 30 柒、附錄圖表............................. 36

    Belin AC, Westerlund M (2008) Parkinson's disease: a genetic perspective. FEBS J 275:1377-1383.
    Bertram CP, Lemay M, Stelmach GE (2005) The effect of Parkinson's disease on the control of multi-segmental coordination. Brain Cogn 57:16-20.
    Bonifati V, Fabrizio E, Vanacore N, De Mari M, Meco G (1995) Familial Parkinson's disease: a clinical genetic analysis. Can J Neurol Sci 22:272-279.
    Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G (2003) DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24:159-160.
    Chang YF, Cheng CM, Chang LK, Jong YJ, Yuo CY (2006) The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem Biophys Res Commun 342:1022-1026.
    Conley SC, Kirchner JT (1999) Parkinson's disease-the shaking palsy. Underlying factors, diagnostic considerations, and clinical course. Postgrad Med 106:39-42, 45-36, 49-50.
    Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889-909.
    De Michele G, Filla A, Volpe G, Gogliettino A, Ambrosio G, Campanella G (1996) Etiology of Parkinson's disease. The role of environment and heredity. Adv Neurol 69:19-24.
    Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome, Neurology 72:240-245.
    Elbaz A, Grigoletto F, Baldereschi M, Breteler MM, Manubens-Bertran JM, Lopez-Pousa S, Dartigues JF, Alperovitch A, Tzourio C, Rocca WA (1999) Familial aggregation of Parkinson's disease: a population-based case-control study in Europe. Neurology 52:1876-1882.
    Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306-318.
    Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry 54:388-396.
    Hatano Y, Sato K, Elibol B, Yoshino H, Yamamura Y, Bonifati V, Shinotoh H, Asahina M, Kobayashi S, Ng AR (2004) PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations. Neurology 63:1482-1485.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427-442.
    Hsu JM, Lee YC, Yu CT, Huang CY (2004) Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J Biol Chem 279:32592-32602.
    Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane el K, McDonald NQ (2008) Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J Biol Chem 283:22325-22335.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-608.
    Lazzarini AM, Myers RH, Zimmerman TR Jr, Mark MH, Golbe LI, Sage JI, Johnson WG, Duvoisin RC (1994) A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology 44:499-506.
    Lee LC, Chen CM, Wang HC, Hsieh HH, Chiu IS, Su MT, Hsieh-Li HM, Wu CH, Lee GC, Lee-Chen GJ, Lin JY (2012) Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis. PLoS One 7:e35302.
    Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329-347.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson's disease. Nature 395:451-452.
    Lev N, Melamed E (2001) Heredity in Parkinson's disease: new findings. Isr Med Assoc J 3:435-438.
    Luo LZ, Xu Q, Guo JF, Wang L, Shi CH, Wei JH, Long ZG, Pan Q, Tang BS, Xia K, Yan XX (2010) FBXO7 gene mutations may be rare in Chinese early-onset Parkinsonism patients. Neurosci Lett 482:86-89.
    Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120:1707-1716.
    Marjama-Lyons JM, Koller WC (2001) Parkinson's disease. Update in diagnosis and symptom management. Geriatrics 56:24-25, 29-30, 33-35.
    Payami H, Larsen K, Bernard S, Nutt J (1994) Increased risk of Parkinson's disease in parents and siblings of patients. Ann Neurol 36:659-661.
    Piccini P, Brooks DJ (1999) Etiology of Parkinson's disease: contributions from 18F-DOPA positron emission tomography. Adv Neurol 80:227-231.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045-2047.
    Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet 2:49.
    Schapira AH (2006) Etiology of Parkinson's disease. Neurology 66:S10-23.
    Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 26:551-557.
    Schultheis PJ, Hagen TT, O'Toole KK, Tachibana A, Burke CR, McGill, DL, Okunade GW, Shull GE (2004) Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun 323:731-738.
    Schulz JB (2008) Update on the pathogenesis of Parkin's disease. J Neurol 255:3-7.
    Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M, Elahi E (2008) Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 82:1375-1384.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839-840.
    Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Müller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Krüger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099-2111.
    Vieregge P, Heberlein I (1995) Increased risk of Parkinson's disease in relatives of patients. Ann Neurol 37:685.
    Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12:521-528.
    Zhao T, De Graaff E, Breedveld GJ, Loda A, Severijnen LA, Wouters CH, Verheijen FW, Dekker MC, Montagna P, Willemsen R, Oostra BA, Bonifati V (2011) Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15). PLoS ONE 6:e16983.
    Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601-607.

    下載圖示
    QR CODE