簡易檢索 / 詳目顯示

研究生: 林承彥
Cheng Yen Lin
論文名稱: 基板傾斜砷化銦/砷化鎵量子點之光譜研究
Spectroscopy study of InAs/GaAs quantum dots on the tilted substrate
指導教授: 陸健榮
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 量子點砷化銦基板傾斜
論文種類: 學術論文
相關次數: 點閱:180下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討基板傾斜上經由Stranski-Krastanow成長模式所生成的量子點的成長特性與光學性質。我們分別對基板傾斜2°、6°、10°以及15°樣品進行光調制反射實驗與光致螢光實驗。

    在光調制反射實驗中,譜圖內有來自濕層與砷化鎵基板的訊號,但是未觀察到明顯的量子點訊號。光致螢光實驗內,我們分別對四組樣品採用改變激發功率與調高溫度的方式,由譜形所產生的變化來探討載子在量子點內的束縛能級間的光學躍遷和載子在不同尺寸的量子點群之間的轉換。我們透過光譜與理論模型所計算出隨量子點尺寸變化的光學躍遷能量值之間的比較,得到對應螢光譜峰的量子點基底長度。

    由四組基板傾斜樣品個別低溫螢光譜形的高斯擬合結果中,可歸納出當基板傾斜角度增加時,螢光譜峰呈現藍移,顯示出載子在量子點內受到的束縛能量變大,因此樣品上的量子點尺寸隨傾斜基板角度變大而變小。此外,基板傾斜角度變大時,樣品的螢光譜峰強度也相對增強,意味著樣品上的量子點密度也跟傾斜角度增加而變密。

    目錄 摘要 目錄 第一章 Ⅲ-Ⅴ量子點系統簡介………………….………..1 參考文獻……………………………..………………………4 第二章 光譜原理 2-1 電子躍遷理論…………………………………………6 2-2 光學函數與電子躍遷的關係…………………………..9 2-3 調制光譜的基本原理…………………………………14 2-4 電場調制……………………………………………..18 2-5弱電場調制……………………………………………21 2-6束縛態的電場調制……………………………………..23 2-7光激螢光的機制……………………………………….24 2-8砷化銦量子點電子能態................................................26 參考文獻……………………………………………………45 第三章 實驗樣品與裝置 3-1 樣品結構……………………………………………..47 3-2 光調制實驗………………………………....……….48 3-3 光激螢光實驗………………………………………..49 第四章 量子點在傾斜基板上的成長特性 4-1傾斜基板量子點的成長性質………………………….52 4-2傾斜基板表面與量子點成長過程…………...….…......53 4-3傾斜角度對臨界厚度、量子點密度和尺寸的影響…..54 參考文獻……………………………………….…………58 第五章光譜分析與討論 5-1量子點內的載子能階躍遷………….………………....59 5-2溫度對量子點的螢光光譜的影響……….……………62 5-3基板傾斜的影響………………………………….……65 5-4量子點生成在基板傾斜之光學性質….………………68 參考文獻……………………………………….…………..92 第六章 結論與展望…………….………………………………94 附錄:A.量子井能階躍遷的計算………………………………..95

    CH.1
    參考文獻
    1.M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986).
    2.Victor M. Ustinov, Alexey E. Zhukov, Anton Y. Egorov, Nikolai A. Maleev, Quantum Dot Lasers ( Oxford University Press, USA, 2003).
    3.C. Santori, M. Pleton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).
    4.J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, Jpn. J. Appl. Phys. 33, L1634 (1994).
    5.Hyo Jin Kim, Young Ju Park, Young Min Park, Eun Kyu Kimb, and Tae Whan Kim, Appl. Phys. lett. 78 3253 (2001).
    6.Ken-ichi Shiraminea, Tomohiko Itoha, Shunichi Mutoa, Tamotsu Kozakib, Seichi Satob, J. Cryst. Growth, 242 332 (2002).
    7.Theodore Chung, Gabriel Walter, and Nick Holonyak, Jr. J. Appl Phys. 97, 053510 (2005)
    8.M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, and F. Scholz, J. Cryst. Growth, 170 558 (1997).
    9.Grundmann, M., Heitz, R., Ledentsov, N.,Stier, O., and Bimberg, D., Superlattices and Microstructures, 19, 81 (1996).
    10.M. A. Cusack, P. R. Briddon, and M. Jaros, phys. Rev. B 54, R2300 (1996)
    11.C. Pryor, Phys. Rev. B. 60, 2869 (1999).
    12.Yiming Lia, O. Voskoboynikov, C. P. Lee, S. M. Sze and O. Tretyak, J. Appl. Phys. 90, 6416 (2001).
    13.A. J. Williamson, L. W. Wang, and Alex Zunger, Phys. Rev. B 62, 12963 (2000).
    14.S. Saada, Elasticity: Theory and Applications (Robert E. Krieger Publishing, Florida, 1989).
    15.E. O. Kane, Phys. Rev. B 31, 7865 (1985).
    16.O. Stier, M. Grundmann, and D. Bimberg, Physical Review B, 59, 5688 (1999).
    17.Jiang, H. and Singh, J., IEEE Journal of Quantum Electronics, 34, 1188 (1998).
    18.K.H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P.M. Petroff, G.H. Döhler, Phys. Rev. B 54, 11346 (1996).
    19.A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, Appl. Phys. Lett. 72, 58 (1998).
    20.D. Morris, N. Perret and S. Fafard, Appl. Phys. Lett. 75, 3593 (1999).

    Ch.2
    參考文獻
    1.沈學礎著,半導體光學性質, chap.2,科學出版社(1992)
    2.F.Abeles ,”Optical Properties of Solids”, chap.2,Amsterdam: North-Holland Pub. Co. ; New York : American Elsevier(1972)
    3.N. Peyghambarian , S. W. Koch and A. Mysyrowicz , “Introduction to Semiconductor Optics”, chap.Ⅵ
    4.Jasprit Singh,”Electronic and Optoelectronic Properties of Semiconductor Structures”,chap.10
    5.B. O. Seraphin,”The effect of an Electric Field on Reflectivity Hulin”, Academic, Dunod, Paris (1964).
    6.D. Huang, G. Ji, U. K. Reddy, H. Morkoc, F. Xiong and T. A. Tombrello, J. Appl. Phys. 63, 5447 (1998).
    7.Alok K. Berry, D. K Gaskill and G. T. Stauf, Appl. Phys. Lett. 58, 2824 (1991).
    8.O. J. Glembocki, N. Bottka and J. E. Fuxrneaux, J. Appl. Phys. 57, 432 (1985).
    9.F. H. Pollak, O. J. Glembocki, “Spectroscopic Characterization Techniques for Semiconductor Technology III”, Vol.946. (SPIE, California, 1988), p.2-35
    10.B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
    11.Landau and Lifshitz ,“Quantum Mechanics”2ed,Mathematical Appendices.
    12.D. E. Aspnes, Phys. Rev. 147, 554 (1966).
    13.K. Suzuki, and J. C. Hensel, Bull. Am. Phys. Soc. 14, 113 (1969)
    14.T.S. Moss,“Handbook on Semiconductors”, North Holland, N.Y., Vol.2. p.109 (1980)
    15.M. Cardona, “Modulation Spectroscopy”, Academic, N. Y. (1969)
    16.H.Shen,S.H.Pan and F.H.Pollak, Phys. Rev. 36, 9384 (1987).
    17.B. V. Shanabrook, O. J. Glembocki, and W. T. Beard, Phys. Rev. B 35, 2540 (1987).
    18.Y. S. Huang, H. Qiang, and Fred H. Pollak,Johnson Lee and B. Elman, J. Appl. Phys. 70, 3808 (1991).
    19.O. J. Glembocki and B. V. Shanabrook, Superlatt. And Microstruct, 5, 603-607(1989).
    20.Y. R. Lee and A. K. Ramdas, L. A. Kolodziejski and R. L. Gunshor, Phys. Rev. B 38, 13143 (1988).
    21.P.N. Keating, Phys. Rev. 145, 637 (1966).
    22.R.M. Martin, Phys. Rev. B 1, 4005(1969) .
    23.Pearson, G. S. and Faux, D. A., J. Appl. Phys. 88, 730 (2000).
    24.L. R. C. Fonseca, J. L. Jimenez, and J. P. Leburton, and R. M.Martin, Phys. Rev. B 57, 4017 (1998).
    25.M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
    26.O. Stier, M. Grundmann, and D. Bimberg, Phys Rev B, 59, 5688 (1999).
    27.L.-W. Wang, J. Kim, and A. Zunger, Phys. Rev. B 59, 5678(1999).
    28.Van de Walle C G Phys. Rev. B. 39, 1871 (1989).
    29.G. Cipriani, M. Rosa-Clot, S. Taddei, Phys. Rev. B 61, 7536 (2000).
    30.M. Grundmann, R. Heitz, N. Ledentsov, O. Stier, and D. Bimberg, Superlattices and Microstructures, 19, 81 (1996).
    31.V. G.. Stolerua, D. Palb, E. Toweb, Physica E 15, 131 (2002).
    32.C. Pryor, Phys. Rev. B, 57, 7190 (1998).

    Ch.4
    參考文獻
    1.J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, Appl. Phys. Lett. 77, 3382 (2000).
    2.A. Konkar, A. Madhukar, P. Chen, Appl. Phys. Lett. 72, 220 (1998).
    3.M. Kitamura, M. Nishioka, J. Oshinowo, and Y. Arakawab Appl. Phys. Lett. 66, 3663 (1995).
    4.J. Oshinowo, M. Nishioka, S. Ishida, and Y. Arakawa, Jpn. J. Appl. Phys. 33, L1634 (1994).
    5.T. Ishihara, S. Lee, M. Akabori, J. Motohisa, T. Fukui, J. Crystal Growth 237-239, 1476 (2002).
    6.J. I. Chyi, T. E. Nee, C. T. Lee, J. L. Shieh, and J. W. Pan, J. Crystal Growth 175/176, 777 (1997).
    7.B. D. Min, Y. Kim, E. K. Kim, S. K. Min and M. J. Park, Phys. Rev. B 57, 11879 (1998).
    8.M. Shinohara, N. Inoue, Appl. Phys. Lett 66, 1936 (1995).
    9.R. Leon, C. Lobo, A. Clark, R. Bozek, A. Wysmolek, A. Kurpiewski and M. Kaminska J. Appy. Phys. 84, 248 (1998).
    10.V P Evtikhiev, A M Boiko, I V Kudryashov, A K Kryganovskii,R A Suris, A N Titkov and V E Tokranov, Semicond. Sci. Technol. 17, 545 (2002).
    11.J. Porsche, A. Ruf, M. Geiger, and F. Scholz, J. Crystal Growth 195, 591 (1998).
    12.Victor M. Ustinov, Alexey E. Zhukov, Anton Y. Egorov, Nikolai A. Maleev, Quantum Dot Lasers ( Oxford University Press, USA, 2003).
    13.G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr, Phys Rev Lett 76, 952 (1996).
    14.Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, J. Appl. Phys. 82, 4489 (1997).
    15.F. Poser, A. Bhattacharya, S. Weeke, W. Richter, J. Crystal Growth 248, 317 (2003).

    Ch.5
    參考文獻
    1.Hongtao Jiang, Jasprit Singh, Physica E 2, 614 (1998).
    2.C. Pryor, Phys. Rev. B. 57, 7190 (1998).
    3.O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B. 59, 5688 (1999).
    4.M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B. 52, 5688 (1995).
    5.M. A. Cusack, P. R. Briddon, and M. Jaros Phys. Rev. B. 54, R2300 (1996).
    6.D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
    7.C. Lobo, R. Leon, S. Marcinkevicˇius, W. Yang, P. C. Sercel, X. Z. Liao, J.Zou, and D. J. H. Cockayne, Phys. Rev. B 60, 16 647 (1999).
    8.H. Kissel, U. Mu¨ller, C. Walther, W. T. Masselink, Yu. I. Mazur, G. G.Tarasov, and M. P. Lisitsa, Phys. Rev. B 62, 7213 (2000).
    9.C.A. Duarte, E.C. F. da Silva,a) A.A. Quivy, M.J.da Silva, S. Martini,J.R. Leite,E.A. Meneses and E. Lauretto, J. Appl. Phys. 93, 6279 (2003).
    10.Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. XuW, K. Ge, Y. Wang, J. Wang, and L. L. Chang Phys. Rev. B 54, 11528 (1996).
    11.W. H. Jiang, X. L. Ye, B. Xu, H. Z. Xu, D. Ding, J. B. Liang, and Z. G. Wang J. Appl. Phys. 88, 2529 (2000).
    12.L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi. Appl. Phys. Lett. 69, 3354 (1996).
    13.Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001).
    14.Z. Ma, K. Pierza, U.F. Keyserb, R.J. Haug Physica E 17, 117 (2003).
    15.R. Heitz, F. Guffarth, I. Mukhametzhanov, M. Grundmann, A. Madhukar, D. Bimberg, Phys. Rev. B 62, 16881 (2000).
    16.Zhixun Ma, Klaus Pierz, and Peter Hinze, Appl. phys. Lett. 79, 2564 (2001).

    QR CODE