簡易檢索 / 詳目顯示

研究生: 黃瓊儀
論文名稱: 班達海域過去25 萬年以來表層海水營養鹽利用率之重建: MD012380 岩芯之氮同位素紀錄
指導教授: 余英芬
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 76
中文關鍵詞: 班達海域營養鹽MD012380 岩芯之氮同位素
論文種類: 學術論文
相關次數: 點閱:144下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海洋生物生產力是海洋調控二氧化碳濃度變動的主要參數之一,而氮營養鹽(主要為NO3-)是初級生產者進行光合作用合成本身有機體必須的物質之一,因此其含量的供需狀況是控制初級生產力多寡的重要控因之一。表層海水營養鹽的含量及生產者的多寡會影響營養鹽被利用的程度,而此不同的結果會反映在氮的同位素組成的分化效應上。因此,本論文工作是希望藉由分析沈積物中氮同位素值記錄隨時間的變化來重建班達海域古海洋表水氮營養鹽的利用率及其隨古環境
    與古氣候變遷的訊息。
    本論文研究乃利用法國海洋研究船瑪麗安·杜帆(Marion Dufresne)號於2001年夏天執行國際海洋古全球變遷計劃(IMAGES)第七航次時,在屬西太平洋邊緣海之班達海(Banda Sea)所採集的MD012380 岩芯進行分析研究工作。分析工作包含此岩芯的氮同位素(δ15N)值,沈積物之總有機碳組成(TOC)、總有機碳/總氮比值(Corg/N atomic ratio)及有機碳的碳同位素(δ13C)組成等。其中氮與
    碳元素與同位素的分析方法主要是採取燃燒法(combustion method),將沈積物經高溫燃燒後所釋放出的氣體(N2、CO2)收集後以質譜儀及元素分析儀進行其同位素值與C、N 含量的測定。分析的標本因受限於氧同素所建立的時間架構,故只以自本岩芯頂部至2082 公分(氧同位素定年結果為250ka)以來的結果作討論。
    此部份的分析資料相當於MIS7 與8 交界(250ka)以來的最近三次冰期-間冰期的變遷。
    MD012380 岩芯之氮同位素分析結果落於5.24~8.81‰之間,在暖期之MIS1氮同位素值平均約為7.51‰,MIS5 除了73ka 出現較低的氮同位素值(5.24‰)外,其餘平均約為6.92‰,到了冷期的MIS2 為6.31‰、MIS3 為6.63‰、MIS4 則為6.63‰,整體的氮同位素值變化可看到冷期低-暖期高的趨勢,但在MIS6 及7 則有約2‰的震盪,且無法區隔MIS6 與7 之間的變動差異。利用本岩芯所在的海域之現今水文資料、岩芯本身氮同位素組成與總氮含量的關係及其與總有機碳隨時間變動的趨勢,再加上岩芯中有機氮相對於有機碳比值及碳同位素組成,推斷本岩芯所紀錄的氮同位素組成並不具有固氮作用的訊號,且可排除成岩作用及脫硝作用的影響,而其中有機物的來源屬於海源的特徵。因此,MD012380 岩芯的碳、氮同位素組成的結果應可反映班達海域表層水的同位素分化的效應。
    所以,本研究利用拉雷分化效應公式可計算粗估班達海域之古海洋環境中表層水營養鹽利用率及其隨時間的變動趨勢。估算的結果反映出在冷期時班達海地區的浮游植物對營養鹽的利用率較低而暖期較高。再配合代表生產力變動的總有機碳含量結果發現MD012380 岩芯沈積物在冷期時總有機碳含量較高但δ15N 較輕;相反地,暖期的總有機碳含量較低且δ15N 較重,這些指標反映在冷期時有較高的生產力,且氮營養鹽的利用率較低。由此推測岩芯中冷期-暖期變化的氮同位
    素組成應非生物生產力變動而造成其對營養鹽攝取量的不足,而應是營養鹽供應量在冷期時有明顯的增加所造成的結果。而此較多營養鹽的供輸極可能是因班達海地區於冷期時因季風強度的改變使表水有較明顯的湧昇流強度增強的效應而導致營養鹽由深層水的供應量增加,因此使得浮游植物對硝酸根離子的利用率變低的結果。

    壹、緒論1 1-1 研究背景1 1-2 研究原理3 1-2.1 氮同位素3 1-2.2 沉積岩芯中氮同位素作為古海洋應用的構想4 1-2.3 影響沉積物氮同位素的變因8 1-3 研究區域9 1-4 時間架構15 貳、研究材料及分析方法20 2-1 研究材料20 2-2 實驗分析流程25 2-2.1 岩芯標本之乾燥與研磨25 2-2.2 氮(δ15N)、碳(δ13C)同位素分析方法25 2-2.3 總有機碳測定37 2-2.4 沉積物之碳/氮比值(Corg/N atomic ratio) 39 參、結果42 3-1 氮同位素分析結果42 3-2 沉積物總有機碳組成含量分析42 3-3 沉積物有機碳/總氮比(Corganic/N atomic ratio)分析45 3-4 沉積物有機碳碳同位素(δ13Corg)分析45 肆、討論49 4-1 氮同位素紀錄49 4-1.1 脫硝作用(Denitrification) 49 4-1.2 固氮作用(Nitrogen fixation) 53 4-1.4 成岩作用(Diagenesis) 58 4-2 營養鹽利用率61 4-3 代用指標指示的環境變化意義64 伍、結論67 參考文獻68

    中文部分
    江東山,1997,海洋上層水中硝酸鹽類之測定及其氮同位素之分析,國立台灣大
    學海洋研究所碩士論文,共85 頁
    李玉玲,2002,南海的固氮作用與浮游植物生產力,2002 年海洋科學成果發表
    會論文摘要,第33 頁。
    余英芬及黃瓊儀,2004,Different fluctations in paleoproductivity and nutrient
    utilization within the southern and northern edges of the Western Pacific Warm
    Pool,2004 年地球科學聯合學術研討會(東亞/西太平洋氣候變化:記錄與
    動力) 論文摘要。
    邱子虔,2000,南海東南海域MD972142 岩心晚第四紀浮游有孔蟲同位素地層及
    古海洋變遷,國立台灣大學地質學研究所碩士論文,共70 頁。
    張豐穎,高樹基及劉康克,1991,沉積物含碳量分析方法之探討,台灣大學海洋
    學刊,第二十七期,pp. 140-150。
    陳永裕,1999,南海晚第四紀生物源沉積紀錄之古氣候紀錄,國立台灣海洋大學
    應用地球物理研究所碩士論文,共105 頁。
    陳致維,2003,西太平洋暖池晚第四紀浮游有孔蟲氧同位素地層紀錄,國立台灣
    大學地質科學研究所,共60 頁。
    黃金錢,2002,南海南部過去十五萬年來之古氣候紀錄:IMAGES 岩心
    MD972151,國立海洋大學應用地球物理研究所碩士學位論文,共40 頁。
    英文部分
    Ahmad, S. M., F. Guichard, K. Hardjawidjaksana, M. K. Adisaputra, L. D. Labeyrie
    (1995) Late Quaternary paleoceanography of the Banda Sea. Mar. Geol., 122:
    385-397.
    Altabet, M. A., and W. G. Deuser (1985) Seasonal variations in natural abundance of
    15N in particles sinking to the deep Sargasso Sea. Nature, 315: 218-219.
    Altabet, M. A., and R. Francois (1994) Sedimentary nitrogen isotopic ratio as a
    recorder for surface ocean nitrate utilization, Glob. Biogeochemi. cycles, 8:
    103-116.
    Altabet, M. A. (1999) Climatically linked oscillations in Arabian Sea denitrification
    over the past 1 m. y.: Implications for the marine N cycle. Paleoceanogr., 14:
    732-743.
    Altabet, M. A., C. Pilskanln, R. Thunell, C. Pride, D. Sigman, F. Chavez, and R.
    Francois (1999) The nitrogen isotope biogeochemistry of sinking particles
    from the margin of the eastern North Pacific. Deep Sea Res. I, 46: 655-579.
    Altabet, M. A., M. J. Higginson, D. W. Murray (2002) The effect of millennial-scale
    changes in Arabian Sea denitrification on atmospheric CO2. Nature, 415:
    159-162.
    Bassinot, F. C., L. D. Babeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton and Y.
    Lancelot (1994) The Astronomical theory of climate and the age of the
    Brunches-Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126: 91-108.
    Barnola, J. M., D. Raynoud, Y. S. Korotkevich, and C. Lorius (1987) Vostok ice
    core, a 160,000-year record of atmospheric CO2. Nature, 166: 408-414.
    Brandes, J. A., A. H. Devol, T. Yoshinari, D. A. Jayakumar, and S. W. A. Naqvi. (1998)
    Isotopic composition of nitrate in the central Arabian sea and eastern tropical
    North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43:
    1680-1689.
    Capone, D. G., P. Z. Jonathan, W. P. Hans, B. Birgitta, J. C. Edward. (1997)
    Trichodesmium, a globally significant marine cyanobacterium. Science, 276:
    1221-1229.
    Christensen, J. P., J. W. Murray, A. H. Devol, and L. A. Codispoti. (1987)
    Denitrification in continental shelf sediments has major impact on the oceanic
    nitrogen budget. Glob. Biogeochmi. Cycles, 1: 97-116.
    Cline, J. D. and Kaplan, I. R. (1975) Isotopic fractionation of dissolved nitrate
    during denitrification in the eastern tropical North Pacific ocean. Mar. Chem., 3:
    271-299.
    Devol, A. H. (1991) Direct measurement of nitrogen gas fluxes from continental
    shelf sediments. Nature, 349: 319-321.
    Emerson, S., J. Hedges (1988) Processes controlling the organic carbon content of
    open ocean sediments. Paleoceanogr., 3: 621-634.
    Farrell, J. W., T. F. Pedersen, S. E. Calvert, and B. Nielsen (1995)
    Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean.
    Nature, 377: 514-517.
    Francois, R. W., M. A. Altabet, and L. H. Burkle (1992) Glacial to interglacial
    changes in surface nitrate utilization in the Indian sector of the southern ocean as
    recorded by sediment δ15N. Paleoceanogr., 7: 589-606.
    Ganeshram, R. S., T. F. Pedersen, S. E. Calvert, G. W. McNeill, M. R. Fontugne (2000)
    Glacial-interglacial variability in denitrification in the world’s oceans: Causes
    and consequences. Paleoceanogr., 15: 361-376.
    Ganssen, G., S. R. Troelsta, B. Faber. B., W. A. Van der Kaars and M. Situmorang
    (1989) Late quarternary paleoceanography of the Banda Sea, eastern
    Indonesian piston cores ( Snellius-II Expedition, Cruise G5). Neth. J. Sea Res.,
    24(4): 491-494.
    Garrison, T. Atmospheric circulation and weather. In: Oceanography. pp.190.
    Edited by T. Garrison, Wadsworth.
    Gieskes, W. W. C., G. W. Kraay, A. Nontji, D. Setiapermana and Sutomo (1990)
    Monsoonal differences in primary production in the eastern Banda Sea
    (Indonesia). Neth. J. Sea Res., 25(4): 473-483.
    Gruber, N., and J. L. Sarmiento (1997) Global patterns of marine nitrogen fixation
    and denitrification. Glob. Biogeochem. Cycles, 11: 235-266.
    Hansell, D.A., Feely, R.A. (2000) Atmospheric intertropical convergence impacts
    surface ocean carbon and nitrogen biogeochemistry in the western tropical
    Pacific. Geophys. Res. Lett., 27: 1013-1016.
    Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol, U. M. Santos (1986)
    Compositions and fluxes of particulate material in the Amazon River. Limonol.
    Oceanogr., 31: 717-738.
    Holmes, M. E., R. R. Schneider, P. J. Müller, M. Segl, and G. Wefer (1997)
    Reconstruction of past nutrient utilization in the eastern Angola basin based on
    sedimentary 15N/14N ratios. Paleoceanogr., 12: 604-614.
    Holmes, E., G. Lavik, G. Fischer, M. Segl, G. Ruhland, G. Wefer (2002) Seasonal
    variability ofδ15N in sinking particles in the Benguela upwelling region.
    Deep-Sea Res. I, 49: 377-394.
    Joint Australian-U.S. Group(1994) The Gateway for terrestrial Material Entering the
    Ocean. EOS. 75, 191-193.
    Kawahata, H., A., Suzuki, N. Ahagon (1998) Biogenic sediments in the West
    Caroline Basin, the western equatorial Pacific during the last 330,000 years.
    Mar. Geol., 149: 155-176.
    Kienast, M. (2000) Unchanged nitrogen isotopic composition of organic matter in
    the South China Sea during the last climatic cycle:Global implications.
    Paleoceanogr., 15: 244-253.
    Kinkade, C., J. Marra, C. Langdon, C. Knudson and A. Gani ilanhude (1997)
    Monsoonal differences in phytoplankton biomass and production in the
    Indonesian Seas: tracing vertical mixing using temperature. Deep-Sea Res. I,
    44: 581-592.
    Kutzbach, J. E. (1981) Monsoon climate of the early Holocene: climate experiment
    with the earth’s orbital parameters for 9000 years ago. Nature, 214: 59-61.
    Lipschultz, F., N. J. P. Owens (1996) An Assessment of nitrogen fixation as a source
    of nitrogen to the North Atlantic Ocean. Biogeochemi., 35: 261-274.
    Liu, K., I. R. Kaplan (1989) The eastern tropical Pacific as a source of 15N-enriched
    nitrate in seawater off southern California. Limnol. Oceanogr., 34: 820-830.
    Liu, K., M. Su, C. Hsueh, G. Gong (1996) The nitrogen isotopic composition of
    nitrate in the Kuroshio water northeast of Taiwan: evidence for nitrogen fixation
    as a source of isotopically light nitrate. Mar. Chem., 54: 273-292.
    Lohse, L., R. T. Kloosterhuis, H. C. de Stigter, W. Helder, Wim van Raaphorst, T. C. E.
    van Weering (2000) Carbonate removal by acidification causes loss of
    nitrogenous compounds in continental margin sediments. Mar. Chem., 69:
    193-201.
    Mariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P.
    Tardieux (1981) Experimental determination of nitrogen kinetic isotope
    fractionation: Some principles, illustration for the denitrification and nitrification
    processes. Plant Soil, 62: 413-430.
    Martinez, J. I., P. De Deckker, A. R. Chivas (1997) New estimates for salinity
    changes in the Western Pacific Warm Pool during the last glacial maximum:
    oxygen-isotope evidence. Mar. Micropaleontol., 32: 311-340.
    Meyers, P. A. (1994) Preservation of elemental and isotopic source identification of
    sedimentary organic matter. Chem. Geol., 144: 289-302.
    Minagawa, M., D. A. Winter, and I. R. Kaplan (1984) Comparison of Kjeldahl and
    combustion methods for measurement of nitrogen isotope ratios in organic matter.
    Anal. Chem., 56: 1859-1861.
    Minagawa, M., and E. Wada (1986) Nitrogen isotope ratios of red tide organisms in
    the East China Sea: A characterization of biological nitrogen fixation, Mar.
    Chem., 19, pp. 245-259.
    Miyake, Y., and E. Wada (1967) The abundance of 15N/14N in marine environments,
    Rec. Oceanogr. Works Jpn., 9, pp. 37-53.
    Montoya, J. P. (1994) Nitrogen isotope fractionation in the modern ocean:
    implications for the sedimentary record. In: Carbon Cycling in the Glacial
    Ocean: Constraints on the Ocean’s Role in Global Change. NATO Asi Series,
    Series C Vol. I 17, pp. 259-279. Edited by Zahn, R., et al., Springer, Berlin,
    Heidelberg, New York .
    Moore, J. K., S. C. Doney, D. M. Glover, I. Y. Fung (2002) Iron cycling and
    nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res.
    II, 49: 463-507.
    Nakatsuka, T., N. Harada, E. Matsumot, N. Handa, T. Oba, M, Ikehara, H. Matsuoka
    and K. Kimoto (1995) Glacial-interglacial migration of an upwelling field in
    the western equatorial Pacific recorded by sediment 15N/14N. Geophys. Res.
    Lett., 22: 2525-2528.
    Neinhuis, P. H. (1981) Distribution of organic organic matter in living marine
    organicsms. In: Marine organic chemistry, pp. 31-69. Edited by E. K.
    Duursma & R. Dawson, Amsterdam: Elsevier.
    O’Leary, M. H.(1988) Carbon isotopes in photosynthesis. Bioscience, 38:
    328-336.
    Packard, T. T., P. C. Garfield, L. A. Codispoti (1983) Oxygen consumption and
    denitrification below the Peruvian upwelling. In: Coastal upwelling, its
    sediment record, part A, responses of the sedimentary regime to present coastal
    Anal. Chem., 56: 1859-1861.
    Minagawa, M., and E. Wada (1986) Nitrogen isotope ratios of red tide organisms in
    the East China Sea: A characterization of biological nitrogen fixation, Mar.
    Chem., 19, pp. 245-259.
    Miyake, Y., and E. Wada (1967) The abundance of 15N/14N in marine environments,
    Rec. Oceanogr. Works Jpn., 9, pp. 37-53.
    Montoya, J. P. (1994) Nitrogen isotope fractionation in the modern ocean:
    implications for the sedimentary record. In: Carbon Cycling in the Glacial
    Ocean: Constraints on the Ocean’s Role in Global Change. NATO Asi Series,
    Series C Vol. I 17, pp. 259-279. Edited by Zahn, R., et al., Springer, Berlin,
    Heidelberg, New York .
    Moore, J. K., S. C. Doney, D. M. Glover, I. Y. Fung (2002) Iron cycling and
    nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res.
    II, 49: 463-507.
    Nakatsuka, T., N. Harada, E. Matsumot, N. Handa, T. Oba, M, Ikehara, H. Matsuoka
    and K. Kimoto (1995) Glacial-interglacial migration of an upwelling field in
    the western equatorial Pacific recorded by sediment 15N/14N. Geophys. Res.
    Lett., 22: 2525-2528.
    Neinhuis, P. H. (1981) Distribution of organic organic matter in living marine
    organicsms. In: Marine organic chemistry, pp. 31-69. Edited by E. K.
    Duursma & R. Dawson, Amsterdam: Elsevier.
    O’Leary, M. H.(1988) Carbon isotopes in photosynthesis. Bioscience, 38:
    328-336.
    Packard, T. T., P. C. Garfield, L. A. Codispoti (1983) Oxygen consumption and
    denitrification below the Peruvian upwelling. In: Coastal upwelling, its
    sediment record, part A, responses of the sedimentary regime to present coastal
    Sverdrup, H. U., M. W. Johnson & R. H. Fleming (1990) Nutrients, organic carbon
    and the carbon cycle in sea water. In: Marine Geochemistry, pp.272-320.
    Edited by R. Chester, Chapman & Hall.
    Sweeney, R. E., K. K. Liu and I. R. Kaplan (1978) Oceanic nitrogen isotopes and
    their uses in determining the source of sedimentary nitrogen. In: Stable
    isotopes in the earth science, pp. 9-26. Edited by B. W. Robinson, DSIR.
    Thunell, R. C., M. Qingmin, S. E. Calvert, T. F. Pedersen (1992) Glacial-Holocene
    Biogenic sedimentation patterns in the South China Sea: productivity variations
    and surface water PCO2. Paleoceanogr., 7: 143-162.
    Van der Kaars, W. A., M. A. C. Dam (1995) A 135,000-year record of vegetational
    and climatic change from the Bandung area, West-Jave, Indonesia.
    Palaeogeogr., Palaeoclimatol,. Palaeocol., 117: 55-72.
    Waworuntu, J. M., R. A. Fine, D. B. Olson and A. L. Cordon (2000) Recipe for
    Banda Sea water. J. Mar. Res., 58: 547-569.
    Wada, E., T. Kadonaga, S. Matsuo, (1975) 15N abundance in nitrogen of naturally
    occurring substances and global assessment of denitrification from isotopic
    viewpoint. Geochemical Journal, 9: 139–148.
    Wada, E. and A. Hottori (1978) Nitrogen isotope effects in the assimilation of
    inorganic nitrogenous compounds by marine diatoms. Geomicrobiol. J., l:
    85-101.
    Wada, E., M. Minagawa, H. Mizutani, T. Tsuji, R. Imaizumi, and K. Karasawa (1987)
    Biogeochemical studies on the transport of organic matter along the Otsuchi
    River watershed, Japan. Estuar. Coast. Shelf Sci., 25: 321-336.
    Wada, E., and A. Hattori, (1991), Nitrogen in the Sea: Forms, Abundances and Rate
    Processes, CRC Press, Boca Raton, Fla.
    Yeh, H., and W. Wang (2001) Factors affecting the isotopic composition of organic
    matter. (1) carbon isotopic composition of terrestrial plant material. Proc. Natl.
    Sci. Counc. ROC, 25: 137-147.

    QR CODE