研究生: |
黃心怡 Huang, Shin-Yi |
---|---|
論文名稱: |
臺灣梅雨季鋒面對流渦旋個案尺度交互作用之模擬與診斷研究 Simulation and Diagnosis of the Frontal Convective Vortex Scale Interaction During the Meiyu Season in Taiwan |
指導教授: |
王重傑
Wang, Chung-Chieh |
口試委員: |
陳泰然
Chen, Tai-Jen 周仲島 Jou, Jong-Dao 簡芳菁 Chien, Fang-Ching 林沛練 Lin, Pay-Liam 王重傑 Wang, Chung-Chieh |
口試日期: | 2022/09/01 |
學位類別: |
博士 Doctor |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 梅雨鋒面 、中尺度渦旋 、帶通濾波 、渦度收支 |
英文關鍵詞: | Meiyu front, mesoscale convective vortex(MCV), band-pass filtering, vorticity budget |
研究方法: | 模式模擬 、 客觀與診斷分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201562 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討梅雨鋒面與其伴隨之中尺度過程,包含低層噴流、中尺度渦旋以及深對流等多重尺度交互作用下,各尺度在影響渦度貢獻上所扮演的角色。選擇兩個梅雨鋒面個案作為研究,個案一為2003年6月6至7日自華南和南海北部移入臺灣南部近海的四個中尺度對流系統(MCSs),MCSs強度持續增強且向東移,為中南部地區帶來豪(大)雨事件。個案二為2014年5月19至20日受梅雨滯留鋒面影響,於華南附近形成一中尺度對流系統沿鋒前分布排列與發展,並逐漸向東移動至臺灣。使用CReSS模式模擬兩個個案,結果顯示梅雨鋒面及其中尺度對流系統模式結果皆有不錯的掌握,無論地面梅雨鋒面的位置、風場以及中尺度對流系統與觀測空間尺度相符,雖在時間尺度上有30~60分鐘的落後,使24小時累積雨量分布有所差異,但其強度一致。
在中尺度渦旋之區域做垂直渦度收支分析結果顯示,在中尺度渦旋最顯著時,個案一局地渦度趨勢項正貢獻為低層扭轉項、中低層渦度輻合及中高層垂直平流項,顯示低層強垂直風切與輻合是渦度增加的原因;個案二北部區域局地渦度趨勢項正貢獻為低層渦度輻散項、中低層扭轉項以及水平平流項,顯示低層輻合與中層強垂直風切是渦度增加的原因之一;南部區域則為整層的渦度輻散項、垂直平流項與水平平流項,顯示低層輻合與垂直上升運動是渦度增加的原因。
利用帶通濾波法將兩個案的數值模擬結果做大尺度、中尺度與對流尺度的分離,結果顯示該方法能有效保留個案中各尺度的特徵。尺度分離後渦度收支各項分析顯示,個案一正渦度貢獻為渦度輻散項與扭轉項,各項皆以對流尺度最為重要,中尺度為輔。個案二北部區域正渦度貢獻為渦度輻散項與扭轉項,各項以中尺度加乘對流尺度為主。尤其在中尺度渦旋發展期,渦度輻合項與水平平流項中的對流尺度其值能與中尺度相當,可見深對流胞在空間分布上比例雖少,但提供的正渦度卻不可忽視;南部區域分析顯示,正渦度貢獻為渦度輻散項與渦度垂直平流項。渦度輻散項以對流尺度加乘大尺度;渦度垂直平流項為大尺度加乘中尺度,顯示大尺度環境已有相當程度的背景渦度值,深對流的潛熱釋加強低層輻合與垂直上升運動,可將渦度回饋至大尺度。
This study explores the role of each scale in influencing the contribution of vorticity under the interaction of the Meiyu front and its accompanying mesoscale processes, including low-level jet, mesoscale convective vortex (MCV), and deep convection. Case 1 was four mesoscale convective systems (MCSs) that moved from South China and the northern South China Sea to the southern coast of Taiwan from June 6 to 7, 2003. The MCSs continued to intensify and moved eastward, bringing heavy rain to the central and southern Taiwan. Case 2 is affected by the lingering of Meiyu front from May 19 to 20, 2014. MCSs were formed near South China, arranged and developed along the front, and gradually moved eastward to Taiwan. Using the CReSS model to simulate two cases, show that the results of the Meiyu front and the MCSs are well controlled. Regardless of the location of the ground Meiyu front, development and movement of MCS and wind field configuration, they are consistent with the observed spatial scale. Although there is a lag of 30 to 60 minutes on the time scale, which makes the different distribution of daily accumulated rainfall, its intensity is the same.
The results of vertical vorticity budget analysis in the region of the MCV show that the positive contributions of the local vorticity trendey term in case 1 are the low level tilting term, the middle-low level vorticity divergence and the middle-high level vertical advection term. It shows that the strong vertical wind shear and convergence in the lower level are the reasons for the increase of vorticity. The positive contribution of the local vorticity trendey term in the northern region of case 2 is the low-level vorticity divergence term, the middle-low level tilting term, and the horizontal advection term, indicating that the low-level convergence and the mid-level strong vertical wind shear for the increase in vorticity. In the southern region display the vorticity divergence term, vertical advection term and horizontal advection term of the whole layer, indicating that the convergence and vertical upward motion of the lower layer are the reasons for the increase of vorticity.
The numerical simulation results of the two cases were separated into large-scale, mesoscale and convective scales using the band-pass filtering method. The analysis of vorticity budget after scale separation shows that the positive vorticity contribution of Case 1 is the vorticity divergence term and tilting term, and the convective scale is the most important, secondary by mesoscale. The positive vorticity contribution in the northern region of Case 2 is the vorticity divergence term and the tilting term, and the terms are dominated by the mesoscale synergistic convection scale. Especially in the development period of MCV, the convective scale in the vorticity divergence term and the horizontal advection term can be equivalent to the mesoscale. It can be seen that although the proportion of deep convection cells in the spatial distribution is small, the positive vorticity provided by them cannot be ignored. The analysis of the southern region shows that the positive vorticity contribution is the vorticity divergence term and the vorticity vertical advection term. The vorticity divergence term is the convective scale synergistic the large scale, and the vorticity vertical advection term is the large scale synergistic the mesoscale, which shows that the large-scale environment has a considerable degree of background vorticity value, and the latent heat release of deep convection enhances the low-level convergence and vertical upward movement, which can feedback the vorticity to the large-scale.
周仲島、洪景山與鄧秀明,1995:TAMEX IOP13鋒面雨帶之個案研究(一) :低層噴流和垂直風切在激發、組織與維持雨帶的角色。大氣科學,23,179–207。
林得恩與林裕豐,2009:2008年梅雨鋒面伴隨中尺度渦旋之個案綜觀環境特徵分析。天氣分析與預報研討會論文集,182–187。
紀水上與陳泰然,1989:第一階段TAMEX密集觀測之個案對流系統與降水研究。大氣科學,17,59–75。
洪致文,2009:從百年氣象資料看臺灣降雨的氣候特徵。臺灣文獻季刊,60 (4),45–69。
張茂興、周仲島及何台華,2000:臺灣中部山區組織性對流系統渦度之分析。大氣科學,28,177–204。
陳泰然與紀水上,1978:臺灣梅雨鋒面之中尺度結構。大氣科學,5,35-47。
陳泰然與蒲金標,1985:華南春季低層噴流之形成與臺灣北部地區豪雨之個案分析。大氣科學,12,23–32。
陳泰然、周鴻祺、黃心怡、楊進賢及張子琦,2011:梅雨季竹苗豪雨個案之中尺度現象探討。大氣科學,39,343–372。
陳薇鈞、陳台琦、林沛練與馮雅茜,2013:2008年西南氣流實驗IOP8雷達折射指數場特性之研究。大氣科學,41,117–138。
蒲金標與陳泰然,1988:梅雨季華南低層噴流與中尺度對流系統之初步分析。氣象學報,34,285–297。
廖信豪與陳台琦,2013:X波段雷達定量降水估計研究-SoWMEX/TiMREX期間IOP8個案。大氣科學,41,65–89。
劉崇治與劉振榮,2000:應用衛星資料在梅雨季海上中尺度對流系統生成前兆之初步探討。大氣科學,28,317–341。
魏志憲、何台華、張茂興與李文兆,2004:梅雨季臺灣南部近海準線狀對流系統的特性分析。大氣科學,34,157–176。
Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective system. Mon. Wea. Rev., 119, 104-118.
Barnes, S. L., 1964: A technique for maximizing details in numerical weather-map analysis. J. Appl. Meteor., 3. 396-409.
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observations. NOAA Tech. Mermo. ERL NSSL-62, 60 pp.
Bettge, T. W., and D. P. Baumhefner, 1980: A method to decompose the spatial characteristics of meteorological variables within a limited domain. Mon. Wea. Rev., 108, 843–854.
Chen, G. T. J., 1977: An analysis of moisture and rainfall for a Mei-Yu regime in Taiwan. Proc. Natl. Sci. Counc., 11, 1–21.
Chen, G. T. J., 1983: Observational aspects of the Mei-Yu phenomenon in sub-tropical China. J. Meteor. Soc. Japan, 61, 306-312.
Chen, G. T. J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884–891.
Chen, G. T. J., 1992: Mesoscale features observed in the Taiwan Mei-Yu season. J. Meteor. Soc. Japan, 70, 497–516.
Chen, G. T. J., 2004: Research on the phenomena of Meiyu during the past quarter century: An overview. World Scientific Series for Meteorology of East Asia Vol. 2, East Asian Monsoon, C. P. Chang, Ed., World Scientific Publishing Co., 357–403.
Chen, G. T. J., and H. C. Chou, 2006A summertime severe weather event occurring in the Taipei Basin. TAO, 17, 3–22.
Chen, G. T. J., and C.-Y. Liang 1992: A midlevel vortex observed in the Taiwan area mesoscale experiment (TAMEX). J. Meteor. Soc. Japan., 70, 25–41
Chen, G. T. J., C. C. Wang, and L. F. Lin, 2006: A diagnostic study of a retreating Mei-Yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874–896.
Chen, G. T. J., C. C. Wang, and S. W. Chang, 2008: A diagnostic case study of Meiyu frontogenesis and development of wave-like frontal disturbances in the subtropical environment. Mon. Wea. Rev., 136, 41–61.
Chen, G. T. J., C. C. Wang, and S. C. S. Liu, 2003: Potential vorticity diagnostics of a Mei-Yu front case. Mon. Wea. Rev., 131, 2680–2696.
Chen, S.J., Y.H. Kuo, W. Wang, Z.Y. Tao, and B. Cui, 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 2330–2351.
Chen, Y. L., X. A. Chen, and Y., X. Gang, 1994: A diagnostic study of the low-level jet during TAMEX IOP5. Mon. Wea. Rev., 122, 2257–2284.
Chen, Y. L., X. A. Chen, S. Chen, and Y. H. Kuo, 1997: A numerical study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 125, 2583–2604.
Chen, Y. L., and S. F. Tseng, 2000: Comments on “the intensification of the low-level jet during the development of mesoscale convective systems on a Mei-Yu front”. Mon. Wea. Rev., 128, 495–506.
Chong, M., and O. Bousqet, 1999: A mesovortex within a near-equatorial mesoscale convective system during TOGA COARE. Mon. Wea. Rev., 127, 1145–1156.
Cho, H. R., and G. T. J. Chen, 1995: Mei-Yu frontogenesis. J. Atmos. Sci., 52, 2109–2120.
Chou, L. C., C. P. Chang, and R. T. Williams, 1990: A numerical simulation of the Mei-Yu front and the associated low-level jet. Mon. Wea. Rev., 118, 1408–1428.
Doswell C. A., 1977. Obtaining meteorologically significant surface divergence fields through the filtering property of objective analysis. Mon. Wea. Rev. 105, 885–892.
Holloway, J. L., 1958: Smoothing and Filtering of Time Series and Space Fields. Advances in Geophysics, 4, 351–389.
Houze, R. A. Jr., 1977 : Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.
Houze, R. A. Jr., W. C. Lee, and M. M. Bell, 2009: Convective Contribution to the Genesis of Hurricane Ophelia (2005). Mon.Wea. Rev., 137, 2778–2800.
Jou, B. J. -D., and S. M. Deng, 1992: Structure of a low-level jet and its role in triggering and organizing the moist convection over Taiwan: A TAMEX case study. TAO, 3, 39–58.
Jou, B. J.-D., W. C. Lee, and R. H. Johnson, 2010: An overview of SoWMEX/TiMREX. Selected Papers of the Fourth International Monsoon Workshop, C. P. Chang, Ed., World Scientific, 1–16.
Kuo, Y. H., and G. T. J. Chen, 1990: The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc., 71, 488–503.
Kerns B. W.J., Y.‐L. Chen, and M.‐Y. Chang, 2010: The diurnal cycle of winds, rain, and clouds over Taiwan during the Mei‐Yu, summer, and autumn rainfall regimes. Mon. Wea. Rev., 138, 497–516.
Kim H. W. and Lee D. K., 2006: An Observational study of Mesoscale Convective Systems with heavy rainfall over the Korean Peninsula. Weather and Forecasting, 21, 125–148.
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971.
Lin, S-C., and T-K. Chiou, 1985: Objective scale separation technique and its application on the mesoscale convective system diagnosis. Pap. Meteor. Res., 8, 2. 69–94.
Lai, H.W., C. A. Davis, B. J.-D. Jou, 2011: A subtropical oceanic mesoscale convective vortex observed during SoWMEX/TiMREX. Mon. Wea. Rev., 139, 2367–2385
Maddox, R. A., 1980: An objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108, 1108–1121.
Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor.Soc., 56, 527–530.
Scott, J. D. and S. A. Rutledge, 1995: Doppler radar observations of an asymmetric mesoscale convective system and associated vortex couplet. Mon. Wea. Rev., 123, 3437–3457.
Stirling, J., and R. M. Wakimoto, 1989: Mesoscale vortices in the stratiform region of a decaying midlatitue Squell line. Mon. Wea. Rev., 117, 452–458.
Smull, J. M., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133.
Tao, S.Y., and L.X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T.N. Krishnamurti, Eds., Oxford University Press, 60–92.
Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of Cloud Resolving Storm Simulator. Hight Performance Computing, 243–259.
Verlinde, J., and W. Cotton, 1990: A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev., 118, 993–1010.
Wang, C.-C., G. T.-J. Chen, and S.-Y. Huang, 2011: Remote trigger of deep convection by cold outflow over the Taiwan Strait in the Mei-yu season: A modeling study of the 8 June 2007 Case. Mon. Wea. Rev., 139, 2854–2875.
Wang, C.-C., G. T. J. Chen, T. C. Chen, and K.Tsuboki, 2005: A numerical study on the effects of Taiwan topography on a convective line during the Mei-yu season. Mon. Wea. Rev., 133, 3217–3242.
Wang, C.-C, J C-S Hsu, G T-J Chen, D-I Lee, 2014: A Study of Two Propagating Heavy-Rainfall Episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic Evolution, Episode Propagation, and Model Control Simulation. Mon. Wea. Rev., 142 (8), 2619–2643.
Wang, C.-C, J C-S Hsu, G T-J Chen, D-I Lee, 2014: A Study of Two Propagating Heavy-Rainfall Episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part II: Sensitivity Tests on the Roles of Synoptic Conditions and Topographic Effects. Mon. Wea. Rev., 142 (8), 2644–2664.
Yeh, H. C., and Y. L., Chen, 2002: The role of offshore convergence on coastal rainfall during TAMEX IOP3. Mon. Wea. Rev., 130, 2709–2730.
Yeh, H. C., and Y. L., Chen, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the Mei-yu season. Mon. Wea. Rev., 131, 1396–1407.
Yu, C. K., Ben Jong-Dao Jou, Bradley F. Smull, 1999: Formative Stage of a Long-Lived Mesoscale Vortex Observed by Airborne Doppler Radar. Mon. Wea. Rev., 127, 838–857.
Zhang, Q. H., K.-H. Lau, Y.-H. Kuo, and S. J. Chen, 2003: A numerical study of a mesoscale convective system over the Taiwan Strait. Mon. Wea. Rev., 131,1150–1170.