研究生: |
曹嘉修 Tsao, Chia-Hsiu |
---|---|
論文名稱: |
第四紀澎湖水道遷移之探討 Quaternary Penghu Channel Migration in the Taiwan Strait |
指導教授: |
李通藝
Lee, Tung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 澎湖水道 、全球海水面 、層序地層 、震測剖面 |
英文關鍵詞: | Penghu Channel, eustatic, sequence stratigraphy, seismic profile |
論文種類: | 學術論文 |
相關次數: | 點閱:259 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用層序地層學的原理,分析震測與井測資料並配合化石定年結果,對比台灣西南部海域的地層。根據化石定年應用到地層的對比,可以確定的年代有CN13b 上界 (1.05 Ma) ,以及更新世與全新世邊界 (0.0117 Ma) ;由此則可依照前人研究的全球海水面變化曲線,去劃分其間的層序年代。結果顯示很可能至少在1.06 Ma時的臺灣海峽中就已經有古澎湖水道出現,並開始不斷的下切與充填 (cut and fill) 。而近陸側的地層持續不斷傾斜與下陷,表示此時期臺灣南部陸地可能已經抬升,且進入前陸盆地的時期,並伴隨著約3.1 mm/yr 的沉積速率。若從震測圖上直接觀察,可以發現至少在0.47 Ma 時,已經有來自臺灣所形成的古曾文溪三角洲往西堆積至剛形成的海峽。另外震測剖面也顯示,澎湖水道的變遷,至少有三期的演化,其中第三期包括現今澎湖水道。而這三期的澎湖水道隨著深度和位置呈現向西移動的趨勢,表示著澎湖水道至少從1.06 Ma 開始以每年28~30 mm/yr 的速度逐步向西移動。這與GPS 觀測到台灣受板塊聚合而造山帶向西移動的速度大致吻合,推測澎湖水道向西的遷移應和臺灣板塊聚合有關。
Seismic profiles, well information, and fossil dating records were used to carry out sequence analysis of Quaternary deposit in offshore southern Taiwan in order to delineate the westward migration of Penghu Canyon. The boundary between Pleistocene and Holocene (0.0117 Ma) can be easily identified in the seismic profiles. Other than that, the upper boundary of CN13b (1.05 Ma) can be defined in the well controls. Consequently, seismic sequence boundaries are identified from the seismic profiles, then correlated to the eustatic sea-level curves. The results reveal that Paleo-Penghu Channel had already existed in southwestern Taiwan since at least
1.06 Ma. The continuous foreland subsidence in western Taiwan, due to the arc-continental collision, caused a relatively fast sediment accumulation rate of about 3.1 mm/yr. Furthermore, the Tzeng Wen River deltaic system prograding toward west into the Taiwan Strait started at
least since 0.47 Ma. Moreover, it is possible to separate the Paleo-Penghu Channel migration into at least three stages according to the seismic interpretation. The burying depths of Paleo-Penghu Channel decreased from east to west during the migration stages. The westward migration of Penghu Channel started from 1.06 Ma to present with a rate of about 28~30mm/yr in offshore southern Taiwan. This migration rate is consistent with
the GPS velocity data of the movement of the Taiwan Central Mountain Range to a stable Asia. Therefore, the Penghu Channel migration has a close connection with the tectonic history of the arc-continental collision in Taiwan.
周素卿、鄧屬予、鍾火盛、蕭從文,1994,臺灣西部前陸盆地地史分析初探,臺灣石油地質,第29號,第289-323頁。
黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,2004,斷層活動性觀測與地震潛勢評估調查研究,臺灣陸上斷層帶地質構造與地殼變形調查研究 (5/5) -台灣西部麓山帶地區地下構造綜合分析,經濟部中央地質調查所報告93-13號。
張麗旭,1955,臺灣之地層,臺灣研究叢刊,第36期,臺灣銀行經濟研究所出版所出版,26-49。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉,2000a,上-更新世台灣西部前陸盆地的演化-沈積層序與沈積物組成的研究。經濟部中央地質調查所彙刊,13期,137-156。
陳貞怡,2001,臺南平原區至麓山帶前緣構造演化之研究,國立臺灣師範大學地球科學系,碩士論文。
董德輝,1997,臺灣西南海域澎湖水道變遷之研究,國立臺灣師範大學地理系,博士論文。
楊超宇,2012,全球海水面升降變遷曲線對比井測資料研究,國立臺灣師範大學地球科學系,碩士論文。
Boggs, S., Wang, W.C., and Lewis, F.S., 1979, Sediment properties and water characteristics of Taiwan shelf and slope, Acta Ocenogr. Taiwanica, Vol. 10, p. 10-49.
Carlson, P.R., and Karl, H.A., 1988, Development of large submarine canyons in the Bering Sea, indicated by morphologic, seismic, and sedimentologie characteristics, Geological Society of America Bulletin, Vol. 100, p. 1594-1615.
Chen, W.S., Ridgway, K.D., Horng, C.S., Chen, Y.G., Shea, K.S., and Yeh, M.G., 2001, Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan: Eustatic and Tectonic Controls on Deposition: Geological Society of America Bulletin, Vol. 113, No. 10, p. 1249-1271.
Chi, W.R., 1978, The late Neogene nannobiostratigraphy In the Tainan foothills region, southern Taiwan. Petroleum Geology of Taiwan, No.15, p. 89-125.
Covey, M., 1984, Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep: Petroleum Geology Taiwan, Vol. 20, p. 53–83.
Ellis, D. V., and Singer, J. M., 2007, Well logging for earth scientists, Dordrecht, The Netherlands, Springer. 692 p.
Fuh, S.C., Liu, C.S., and Wu, M.S., 1997, Migration of canyon systems from Pliocene to Pleistocene in area between Hsyning Structure and Kaoping Slope, Petroleum Geology of Taiwan, No. 30, p. 43-60.
Fuh, S.C., Liang, S.C., and Wu, M.S., 2003, Spatial and Temporal Evolution of the Plio-Pleistocene Submarine Canyons between Potzu and Tainan, Taiwan, Petroleum Geology of Taiwan, No. 36, p. 1-18.
Georgiopoulou, A., and Cartwright, J.A., 2013, A critical test of the concept of submarine equilibrium profile, Marine and Petroleum Geology, Vol. 41, p. 35-47.
Haq, B.U., Hardenbol, J., and Vail, P.R., 1987, Chronology of Fluctuating Sea Levels Since the Triassic, Science, Vol 235, p. 1156-1167.
Hjulstrøm, F., 1939, Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments; A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, p. 5-31.
Huang, Z.Y., and Yu H.S., 2003, Morphology and Geologic Implications of Penghu Channel off southwest Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, Vol.14, No.4, p.469-485.
Lee, T.Y., and Lawver, L.A., 1995, Cenozoic plate reconstruction of Southeast Asia, Tectonophysics, Vol. 251, p. 85-138.
Lin, K.C., Hu, J.C., Ching, K.E., Angelier, J., Rau, R.J., Yu, S.B., Tsai, C.H., Shin, T.C., and Huang, M.H., 2010, GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan, Journal of geophysical research, Vol. 115, B07404.
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005, The Phanerozoic Record of Global Sea-Level Change, Science, Vol. 310, p. 1293-1298.
Mitchum, R.M., Vail, P.R., and Sangree, J.B., 1977, Seismic stratigraphy and global changes of sea level, part6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences, AAPG Memoir 26, p. 117-133.
Normark, W.R. and Carlson, P.R., 2003, Giant submarine canyons: Is size any clue to their importance in the rock record? Geological Society of America Special Paper 370, p. 175–190.
Okada, H., and Bukry, D., 1980, Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation, Marine Micropaleontology, Vol. 5, p. 321-325.
Posamentier, H., Jervey, M., and Vail, P., 1988, Eustatic controls on clastic deposition I—conceptual framework: Sea-Level Changes: An Integrated Approach: SEPM, Special Publication, Vol. 42, p. 109-124.
Rider, H., 2002, The Geological Interpretation of Well Logs 2nd Edition, Houston, Rider-French Consulting Limited, 280 p.
Serra, O., and Sulpice, L., 1975, Sedimentologic analysis of shale-sand series from well logs. SP WLA 16th Ann. Logging. Symp., W.
Sloss, L.L., Krumbein, W.C., and Dapples, E.C., 1949, Integrated facies analysis. In: C.R. Longwell (Editor) , Sedimentary Facies in Geology History. Geological Society of America, p. 91-124.
Teng, L.S., 1987, Stratigraphic records of the late Cenozoic Penglai Orogeny of Taiwan. Acta. Geology Taiwan., Vol. 25, p. 205-224.
Teng, L.S., 1990, Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan. Tectonophys., Vol. 183, p. 67-76.
Vail, P. R., Mitchum, R. M., Jr., and Thompson, S., III, 1977a, Seismic Stratigraphy and Global Changes of Sea Level: Part 3. Relative Changes of Sea Level from Coastal Onlap: Section 2. Application of Seismic Reflection ConFig.uration to Stratigrapic Interpretation: Seismic Stratigraphy--Applications to Hydrocarbon Exploration Memoir 26, p. 63-81.
Vail, P. R., Todd, R. G., and Sangree, J. B., 1977b, Seismic Stratigraphy and Global Changes of Sea Level: Part 5. Chronostratigraphic Significance of Seismic Reflections: Section 2. Application of Seismic Reflection ConFig.uration to Stratigraphic Interpretation: Seismic Stratigraphy--Applications to Hydrocarbon Exploration Memoir 26, p. 99-116.
Wu, C.R., Chao, S.Y., and Hsu, C., 2007, Transient, seasonal and interannual variability of the Taiwan Strait Current. Journal of Oceanography, Vol 63, p. 821-833.