簡易檢索 / 詳目顯示

研究生: 徐晟智
Hsu, Sheng-Chih
論文名稱: 二維結構稀磁性硒化鎘奈米片之合成、鑑定與應用
Syntheses, Characterizations and Applications of Diluted Magnetic CdSe 2D Nanosheets
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 125
中文關鍵詞: 二維結構稀磁性半導體硒化鎘光催化分解水
英文關鍵詞: 2D structure, Diluted Magnetic Semiconductor, cadmium selenide, photocatalytic water splitting
DOI URL: https://doi.org/10.6345/NTNU202202956
論文種類: 學術論文
相關次數: 點閱:223下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們摻雜過渡金屬元素(錳、釓、釩及鎳)於二維結構硒化鎘奈米材料中,並探討其合成、結構、光學特性、磁性及產氫應用。利用乙二胺合成出高結晶性之二維奈米片材料,其中雙牙基用來橋接硒化鎘之單層結構,同時在合成步驟中加入具未成對電子之金屬前驅物,能形成奈米級稀磁性半導體。透過穿透式電子顯微鏡、掃描式電子顯微鏡、紫外-可見光光譜儀、螢光光譜儀、X光粉末繞射儀、X光吸收光譜-延伸區精細結構、電子順磁共振光譜儀、超導量子干涉磁量儀等儀器,除鑑定二維稀磁性硒化鎘之形貌、光學性質、晶體結構、化學配位環境、原子位置、磁性等特性,同時比較其光催化分解水效率,來瞭解半導體中摻雜金屬對電荷分離之影響。

    In this thesis, we doped transition metal elements (manganese, gadolinium, vanadium and nickel) into two-dimensional structures of cadmium selenide nanosheets, to discuss their syntheses, structures, optical properties, magnetic properties and hydrogen evolution application. High crystallinity 2D nanosheet materials were synthesized from ethylenediamine as a bidentate to bridge each monolayer in cadmium selenide. Selected metal ions with unpaired electron precursors were introduced to the synthesis, resulting in dilute magnetic semiconductors in 2D nanoscale. These 2D dilute magnetic cadmium selenides were characterized by transmission electron microscopy, scanning electron microscopy, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray powder diffraction, extended X-ray absorption fine structure, electron paramagnetic resonance spectroscopy and superconducting quantum interference device techniques. In addition to their information in morphology, optical properties, crystal structures, chemical coordination environments, atomic positions, magnetic properties, additional catalytic applications of photocatalytic water splitting were performed to understand the effect of charge separation by doping metal into 2D semiconductors.

    摘要 I Abstract II 目錄 III 第一章 緒論 1 1.1 稀磁性半導體之概要 1 1.2 以化學方法製備稀磁性半導體 2 1.3 錳摻雜於硒化鎘之稀磁性半導體研究近況 2 1.3.1 錳摻雜於硒化鎘之零維稀磁性半導體 3 1.3.2 錳摻雜於硒化鎘之一維稀磁性半導體 5 1.3.3 錳摻雜於硒化鎘之二維稀磁性半導體 7 1.4 錳摻雜在二維結構硒化鎘奈米材料之目的及期望 10 第二章 實驗方法 12 2.1 化學藥品 12 2.2 合成硒前驅物 14 2.3 合成CdSe•en0.5奈米二維層狀化合物 16 2.4 合成各類金屬摻雜CdSe•en0.5奈米二維層狀化合物 18 2.4.1 合成Cd1-xMnxSe•en0.5奈米二維層狀化合物 18 2.4.2 合成Cd1-xGdxSe•en0.5奈米二維層狀化合物 20 2.4.3 合成Cd1-xVxSe•en0.5奈米二維層狀化合物 21 2.4.4 合成Cd1-xNixSe•en0.5奈米二維層狀化合物 22 2.5 奈米二維層狀化合物光催化水分解反應 24 2.6 樣品儀器鑑定 26 2.6.1 場效發射式掃描式電子顯微鏡 27 2.6.2 穿透式電子顯微鏡 27 2.6.3 高解析穿透式顯微鏡 27 2.6.4 紫外-可見光光譜儀 28 2.6.5 螢光光譜儀 28 2.6.6 X光粉末繞射儀 28 2.6.7 元素分析儀 31 2.6.8 電子順磁共振光譜儀 31 2.6.9 超導量子干涉磁量儀 32 2.6.10 X光吸收光譜-X光吸收延伸區精細結構 33 2.6.11 感應耦合電漿放射光譜分析儀 34 2.6.12 拉曼光譜儀 35 2.6.13 低壓汞燈 35 2.6.14 X光光電子光譜儀/化學分析電子光譜 35 2.6.15 氣相層析熱導偵測器 36 第三章 結果與討論 37 3.1 CdSe•en0.5合成條件之優化 37 3.1.1 不同硒前驅物合成之探討 38 3.1.2 不同硒前驅物各別改變生長溫度之比較 43 3.2 摻雜不同濃度之過渡金屬(錳、釓、釩、鎳)於CdSe•en0.5 49 3.2.1 摻雜後組成分析 50 3.2.2 探討摻雜前後之形貌變化 55 3.2.3 晶體結構之方向優選性 60 3.2.4 摻雜對晶體結構之變化 66 3.2.5 摻雜對化學環境之變化 84 3.2.6 摻雜對電子結構之影響 91 3.2.7 摻雜後之磁性表現 106 3.3 催化應用 113 3.3.1 摻雜鎳於CdSe•en0.5樣品之催化應用 116 3.3.2 摻雜對光催化水分解效率之影響 118 第四章 結論 121 參考文獻 122

    1. Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H. K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S. J.; Bacher, G.; Hyeon, T. J. Am. Chem. Soc. 2015, 137, 12776.
    2. Ohno, H., Making Nonmagnetic Semiconductors Ferromagnetic. Science 1998, 281, 951.
    3. Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R. Adv. Func. Mater. 2008, 18, 3873.
    4. Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Science 2012, 338, 1321.
    5. Archer, P. I.; Santangelo, S. A.; Gamelin, D. R. Nano Lett. 2007, 7, 1037.
    6. Lu, J.; Wei, S.; Yu, W.; Zhang, H.; Qian, Y. Chem. Mater. 2005, 17, 1698.
    7. Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K. T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; Park, J. H.; Kim, Y. W.; Hwang, G. S.; Dobrowolska, M.; Furdyna, J. K.; Hyeon, T. Nat. Mater. 2010, 9, 47.
    8. Li, Z.; Cheng, L.; Sun, Q.; Zhu, Z.; Riley, M. J.; Aljada, M.; Cheng, Z.; Wang, X.; Hanson, G. R.; Qiao, S.; Smith, S. C.; Lu, G. Q. Angew. Chem. Int. Ed. 2010, 49, 2777.
    9. Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Nature 2005, 436, 91.
    10. Norris, D. J.; Efros, A. L.; Erwin, S. C. Science 2008, 319, 1776.
    11. Peng, Y. Z.; Song, W. D.; An, C. W.; Qiu, J. J.; Chong, J. F.; Lim, B. C.; Hong, M. H.; Liew, T.; Chong, T. C. Appl. Phys. A 2005, 80, 565.
    12. Wu, Z.; Tian, X.; Gui, G.; Gong, C.; Yang, S.; Chu, P. K. Appl. Surf. Sci. 2013, 276, 31.
    13. Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. J. Am. Chem. Soc. 2003, 125, 13205.
    14. Zhang, X. Y.; Dai, J. Y.; Ong, H. C. Open J. Phys. Chem. 2011, 01, 6.
    15. Zhong, M.; Wang, S.; Li, Y.; Hu, Y.; Zhu, M.; Jin, H.; Li, Y.; Zhang, H.; Zhao, H. Ceramics International 2015, 41, 451.
    16. Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. J. Am. Chem. Soc. 2017, 139, 6761.
    17. Lin, W. S.; Han, Y.-H.; Chang, T.-Y.; Wang, C. M.; Chang, C.-H.-T.; Tsay, J.-S. J. Phys. Chem. C 2015, 119, 20673.
    18. Furdyna, J. K. J. Appl. Phys. 1988, 64, R29.
    19. Magana, D.; Perera, S. C.; Harter, A. G.; Dalal, N. S.; Strouse, G. F. J. Am. Chem. Soc. 2006, 128, 2931.
    20. Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R. ACS Nano 2016, 10, 7135.
    21. Jun, Y.-w.; Jung, Y.-y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615.
    22. Chen, C.-C.; Hsu, Y.-J.; Lin, Y.-F.; Lu, S.-Y. J. Phys. Chem. C 2008, 112, 17964.
    23. Fainblat, R.; Frohleiks, J.; Muckel, F.; Yu, J. H.; Yang, J.; Hyeon, T.; Bacher, G. Nano Lett. 2012, 12, 5311.
    24. Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U. J. Am. Chem. Soc. 2001, 123, 2354.
    25. Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. J. Am. Chem. Soc. 2002, 124, 11495.
    26. Dzhagan, V.; Valakh, M.; Mel'nik, N.; Rayevska, O.; Lokteva, I.; Kolny-Olesiak, J.; Zahn, D. R. T. Int. J. Spectrosc. 2012, 2012, 532385.
    27. Sarma, R.; Deka, G.; Mohanta, D. Mater. Res. Bull. 2015, 62, 71.
    28. Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A. J. Am. Chem. Soc. 2003, 125, 7049.
    29. Phuruangrat, A.; Thongtem, T.; Sinaim, H.; Thongtem, S. J. Exp. Nanosci. 2013, 8, 818.
    30. Kim, H. B.; Jang, D. J. Nanoscale 2016, 8, 403.
    31. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E. Inorg. Chem. 2013, 52, 2933.
    32. Neeleshwar, S.; Chen, C. L.; Tsai, C. B.; Chen, Y. Y.; Chen, C. C.; Shyu, S. G.; Seehra, M. S. Phys. Rev. B 2005, 71, 201307.
    33. Wei, S.; Lu, J.; Qian, Y. Chem. Mater. 2008, 20, 7220.
    34. Meneghini, C.; Dalconi, M. C.; Nuzzo, S.; Mobilio, S.; Wenk, R. H. Biophys. J. 2003, 84, 2021.
    35. Hyett, G.; Green, M.; Parkin, I. P. J. Am. Chem. Soc. 2006, 128, 12147.
    36. Lonardelli, I.; Wenk, H.; Ren, Y. Geophysics 2007, 72, D33.
    37. Jue, M.; Kim, C. W.; Kang, S. H.; Yoon, H.; Jang, D.; Kwon, Y. K.; Kim, C. Sci. Rep. 2015, 5, 16236.
    38. Thambidurai, M.; Muthukumarasamy, N.; Velauthapillai, D.; Lee, C. J. Mater. Sci.: Mater. Electron 2013, 24, 4535.
    39. Kaur, K.; Lotey, G. S.; Verma, N. K. J. Mater. Sci.: Mater. Electron. 2013, 25, 311.
    40. Anooja, J. B.; Aswathy, P. M.; Varghese, N.; Chandrakanth, C. K.; Devendra Kumar, N.; Sundaresan, A.; Syamaprasad, U. Inorg. Chem. Front. 2015, 2, 731.
    41. Kobayashi, M.; Iwata, H.; Hanzawa, H.; Yoshiue, T.; Endo, S. Physica Status Solidi (b) 1996, 198, 515.
    42. Fei, H.; Li, H.; Li, Z.; Feng, W.; Liu, X.; Wei, M. Dalton Trans. 2014, 43, 16522.
    43. Nguyen, H. T. T.; Jung, D.; Park, C.-Y.; Kang, D. J. Mater. Chem. Phys. 2015, 165, 19.
    44. Dong, G.-j.; Bai, Y.; Zhang, Y.-f.; Zhao, Y. New J. Chem. 2015, 39, 3588.
    45. Xu, J.; Jiang, Q.; Shang, J.-K.; Wang, Y.; Li, Y.-X. RSC Adv. 2015, 5, 92526.
    46. Bradshaw, L. R.; Hauser, A.; McLaurin, E. J.; Gamelin, D. R. J. Phys. Chem. C 2012, 116, 9300.
    47. Peng, B.; Liang, W.; White, M. A.; Gamelin, D. R.; Li, X. J. Phys. Chem. C 2012, 116, 11223.
    48. Gupta, R.; Taguchi, T.; Borovik, A. S.; Hendrich, M. P. Inorg. Chem. 2013, 52, 12568.
    49. Chang, J. Y.; Chen, G. R.; Li, J. D. Phys. Chem. Chem. Phys. 2016, 18, 7132.
    50. Baltes, M.; Van Der Voort, P.; Weckhuysen, B. M.; Ramachandra Rao, R.; Catana, G.; Schoonheydt, R. A.; Vansant, E. F. Phys. Chem. Chem. Phys. 2000, 2, 2673.
    51. Nunes, C. D.; Vaz, P. D.; Felix, V.; Veiros, L. F.; Moniz, T.; Rangel, M.; Realista, S.; Mourato, A. C.; Calhorda, M. J. Dalton Trans. 2015, 44, 5125.
    52. Julian, R. S. Phys. Rev. 1963, 130, 17.
    53. 謝政穎. 魔術尺寸硒化鎘奈米團簇物及二維結構之合成、鑑定與應用. 國立臺灣師範大學, 台北市, 2016.
    54. Andrew Frame, F.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E. Chem. Commun. 2008, 2206.
    55. Ruberu, T. P. A.; Dong, Y.; Das, A.; Eisenberg, R. ACS Catalysis 2015, 5, 2255.
    56. Lv, H.; Ruberu, T. P.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R. J. Am. Chem. Soc. 2016, 138, 11654.
    57. E. F. Bertaut, T. Q. Duc Acta Cryst. 1974, B30, 2234.
    58. E. Pleau, G. Kokoszka J. Chem. Soc., Faraday Trans. 2 1973, 69, 355.

    下載圖示
    QR CODE