簡易檢索 / 詳目顯示

研究生: 帕拉· 桑達裡亞
Sowndarya Palla
論文名稱: 四氫吡嗪二異喹啉作為SARS-CoV-2進入抑制劑的合成與評估,以及α-氯烯胺酮、1,4-苯二氮䓬和1H-茚類化合物合成新方法的開發
Synthesis and Evaluation of Tetrahydropyrazino Diisoquinolines as SARS-CoV-2 Entry Inhibitors and Development of Novel Protocols for the Synthesis of α-Chloroenaminones, 1,4-Benzodiazepines and 1H-Indenes
指導教授: 姚清發
Yao, Ching-Fa
口試委員: 姚清發
Yao, Ching-Fa
梁博煌
Liang, Po-Huang
陳世勳
Chen, Shih-Hsun
林文偉
Lin, Wen-wei
杜玲嫻
Tu, Ling-Hsien
口試日期: 2025/01/09
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 289
中文關鍵詞: 嚴重急性呼吸系統綜合症滾輪驅動國際衛生戰略
英文關鍵詞: SARS-CoV‑2, Receptor-Binding Domain, Non-structural proteins
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Part-I: 一類四氫吡嗪并[2,1-a:5,4-a']二異喹啉衍生物在以水作為溶劑的環保條件下被成功合成。部分合成化合物的三維結構通過X射線繞射確定。由於天然存在的異喹啉生物鹼對包括冠狀病毒在內的多種病毒具有顯著的抗病毒活性,對所合成的化合物進行了針對SARS-CoV-2的抑制活性測試。結果顯示,活性化合物50和96分別通過抑制SARS-CoV-2刺突蛋白受體結合域(RBD)與人類受體血管緊張素轉化酶2(ACE2)之間的相互作用,阻止Delta SARS-CoV-2進入VeroE6細胞,表現出EC50值分別為26.5 ± 6.9和17.0 ± 3.7 μM,且CC50均大於100 μM。本研究為異喹啉的抗病毒或其他應用提供了一種綠色合成方法。

    Part-II: 苯胺與β-氯酮的Michael加成反應通過消除鹽酸(HCl)生成烯胺酮。隨後,這些烯胺酮通過原位的sp² C-H官能化轉化為α-氯烯胺酮。苯胺上的電子供體基團能提高其與β-氯酮的反應性,生成對應產物並具有優異的產率。開發了一種高度原子經濟的方法,使用二甲基亞碸(DMSO)作為綠色氧化劑和溶劑。該方法可高效生成α-官能化烯胺酮,具有良好的產率和極高的Z-選擇性。通過多種底物驗證了該反應的普適性,並且放大實驗證明其實際應用價值。此外,還實現了在無催化劑的條件下,β-氯酮與鄰苯二胺的雙環化反應,可在溫和條件下合成1,4-苯二氮䓬衍生物,並取得中等產率。

    Part-III: 一種合成1H-茚類化合物的級聯反應已被開發,通過2-苯乙烯基苯甲醛與吲哚反應實現。該過程包括碘催化的吲哚對2-苯乙烯基苯甲醛醛基的親核加成,形成碳陽離子中間體。這些中間體隨後經歷4π-電子環化反應,生成具有三取代雙鍵的茚類化合物。在反應條件下,這些茚類化合物進一步轉化為熱力學更穩定的全取代雙鍵產物。此外,反應還生成少量吲哚基苯并[b]咔唑類副產物。

    关键词:

    SARS CoV 2:嚴重急性呼吸系統綜合症
    RBD:滾輪驅動
    NSP:國際衛生戰略

    Part-I: A class of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives were synthesized under an environmentally friendly condition using water as a solvent. The 3-D structures of some synthesized compounds were determined by X-ray diffraction. Since naturally occurring isoquinoline alkaloids have significant antiviral activities against a wide range of viruses, including coronaviruses, the synthesized compounds were assayed for their inhibitory activities against SARS-CoV-2. The results showed that the active compounds 50 and 96 blocked the delta SARS-CoV-2 entry into VeroE6 cells to display EC50 of 26.5 ± 6.9 and 17.0 ± 3.7 M, respectively, by inhibiting the interaction between SARS-CoV-2 Spike’s receptor binding domain (RBD) and human receptor angiotensin converting enzyme 2 (ACE2), and CC50 greater than 100 M. This study provides a green synthesis method of isoquinolines for antiviral or other applications.

    Part-II: The Michael addition of anilines to β-chloroenones produces enaminones through the elimination of hydrochloric acid (HCl). These enaminones undergo in situ sp² C-H functionalization to yield α-chloroenaminones. The reactivity of anilines with β-chloroenones is significantly enhanced by electron-donating groups, enabling the formation of products with excellent yields. A highly atom-efficient method utilizing dimethyl sulfoxide (DMSO) as a green oxidant and solvent has been developed, offering α-functionalized enaminones with high yields and remarkable Z-selectivity. The reaction demonstrates broad substrate compatibility and scalability, highlighting its practical utility. Furthermore, a catalyst-free double annulation of β-chloroenones with o-phenylenediamine has been successfully implemented, facilitating the synthesis of 1,4-benzodiazepine derivatives in moderate yields under mild conditions.

    Part-III: A cascade reaction has been developed for the synthesis of 1H-indenes by reacting 2-styrylbenzaldehydes with indoles. The process involves an iodine-catalyzed nucleophilic addition of indoles to the aldehyde group of 2-styrylbenzaldehydes, resulting in the formation of carbocation intermediates. These intermediates undergo 4π-electrocyclization to yield indenes with a trisubstituted double bond. Under the reaction conditions, these indenes are further transformed into more thermodynamically stable products with a fully substituted double bond. Minor amounts of indolylbenzo[b]carbazoles are also generated as byproducts.

    Keywords: SARS CoV 2: Severe acute respiratory syndrome coronavirus 2
    RBD: Receptor-Binding Domain
    NSP: non-structural proteins

    ACKNOWLEDGEMNT……………………………………………………………………………...VI ABBREVIATION LIST ………………………………………………………………………........VIII Abstract (Chinese) ……………………………………………………………………………………XI Abstract (English)……………………………………………………………………………............XIII TABLE OF CONTENTS …………………………………………………………………………....XV PART-1: Green Synthesis and Evaluation of Tetrahydropyrazino[2,1-a:5,4-a'] diisoquinolines as SARS-CoV-2 Entry Inhibitor………………………………….……….......1 1. Introduction (Part I)………………………………………………………………………….1 2. Experimental Methods …………………………………………………………………….5 2.1. General methods……………………………………………………………………....5 2.2. Synthesis of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives…………......5 2.3. X-ray analysis of the synthesized compounds ………………………………………………12 2.4. Antivirus EC50 and cytotoxicity CC50 measurements ……………………………………….13 2.5. Test of synthesized compounds on inhibiting RBD:ACE2………………………………….14 2.6. Molecular docking……………………………………………………………...…………....14 2.7. Drug likeness analysis……………………………………………………………………......15 3. RESULTS………………………………………………………………………………...…..15 3.1. Synthesis of tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives from isoquinoline and various phenacyl bromides……………………………………………………………….15 3.2. Antiviral activities of some synthesized compounds against SARS-CoV-2………………...21 3.3. Evaluation of the active antivirals against RBD:ACE2 involved in virus entry………….....22 3.4. Binding mode of the inhibitor with RBD……………………………………………………23 3.5. Drug-likeness of the inhibitor as judged from Lipinski rule of five and ADMET properties…………………………………………………………………………………............24 4. DISCUSSION……………………………………………………………………………….....25 5. References (Part I) …………………………………………………………………….............28 6. Supplementary data (Part I)……………………………………………………………………39 Part-II: Catalyst-free reactions of anilines with β-chloroenones: synthesis of α- chloroenaminones and 1,4-benzodiazepines…………………………………............68 Abstract (Chinese) (Part II)……………………………………………………………………………68 Abstract (English) (Part II) …………………………………………………………………………...69 Introduction (Part II) ……………………………………………………………………………….....70 Results and discussion……………………………………………………………………………72 Conclusions………………………………………………………………………………………80 Experimental section……………………………………………………………………………..80 General information…………………………………………………………………………………..80 General Procedure for the Synthesis of β-chloroenones 1…………………………………….....81 General Procedure for the Synthesis of α-Chloroenaminones 3 ………………………………...83 General procedure for the scale-up synthesis of 3aa and 3ad …………………………………...95 General procedure for the Synthesis of 1,4-benzodiazepine derivatives………………………...96 Single crystal X-ray analytical data…………………………………………………………101 NMR Spectra copies………………………………………………………………………...107 Mass Spectrometry Data……………………………………………………………………159 References…………………………………………………………………………………..191 Part-III: Iodine-Catalyzed Cascade Reactions of 2-Styrylbenzaldehydes with Indoles for the Synthesis of 1H-Indenes via 4π-Electrocyclization………………………………..196 Abstract (Chinese) (Part III) ……………………………………………………………......196 Abstract (English) Part III……………………………………………………...…...............197 Introduction (Part III) ………………………………………………………………………198 Experimental Section……………………………………………………………….............205 General information………………………………………………………………...............205 General Procedure for the Synthesis of 1H-indenes………………………………………..206 General procedure for the synthesis of 2-styrylbenzaldehydes……………………………...206 NMR Data of 2-Styrylbenzaldehydes………………………………………………………207 Single crystal X-ray analytical data………………………………………………………...226 NMR Spectra Copies…………………………………………………………………….....233 References………………………………………………………………………………….286

    Part-I: 1. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395 (10223), 497−506, DOI: 10.1016/S0140-6736(20)30183-5.
    2. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579 (7798), 265−269, DOI: 10.1038/s41586-020-2008-3.
    3. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382 (8), 727− 733, DOI: 10.1056/NEJMoa2001017.
    4. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273, DOI: 10.1038/s41586-020-2012-7.
    5. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W. J.; Wang, D.; Xu, W.; Holmes, E. C.; Gao, G. F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implication for virus origins and receptor binding. Lancet 2020, 395, 565–574, DOI: 10.1016/S0140-6736(20)30251-8.
    6. Jackson, C. B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3−20, DOI: 10.1038/s41580-021-00418-x.
    7. Bestle, D.; Heindl, M. R.; Limburg, H.; Van Lam van, T.; Pilgram, O.; Moulton, H.; Stein, D. A.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Klenk, H. D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance 2020, 3, e202000786, DOI: 10.26508/lsa.202000786.
    8. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A.; Muller, M. A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181 (2), 271−280.e8, DOI: 10.1016/j.cell.2020.02.052.
    9. Yamamoto, M.; Kiso, M.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Takeda, M.; Kinoshita, N.; Ohmagari, N.; Gohda, J.; Semba, K.; Matsuda, Z.; Kawaguchi, Y.; Kawaoka, Y.; Inoue, J. I. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 2020, 12, 629, DOI: 10.3390/v12060629.
    10. Zhao, M. M.; Yang, W. L.; Yang, F. Y.; Zhang, L.; Huang, W. J.; Hou, W.; Fan, C. F.; Jin, R. H.; Feng, Y. M.; Wang, Y. C.; Yang, J. K. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal. Transduct. Target Ther. 2021, 6, 134, DOI: 10.1038/s41392-021-00558-8.
    11. Hsu, M. F.; Kuo, C. J.; Chang, K. T.; Chang, H. C.; Chou, C. C.; Ko, T. P.; Shr, H. L.; Chang, G. G.; Wang, A. H.; Liang, P. H. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem. 2005, 280 (35), 31257–31266, DOI: 10.1074/jbc.M502577200.
    12. Kuo, C. J.; Liang, P. H. Characterization, inhibition, and engineering of the main protease of Severe Acute Respiratory Syndrome Coronavirus. ChemBioEng. Rev. 2015, 2, 118–132, DOI:10.1002/cben.201400031
    13. Kuo, C. J.; Liang, P. H. SARS-CoV-2 3CLpro displays faster self-maturation in vitro than SARS-CoV 3CLpro due to faster C-terminal cleavage. FEBS Lett. 2022, 596 (9), 1214–1224, DOI: 10.1002/1873-3468.14337.
    14. de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534, DOI: 10.1038/nrmicro.2016.81.
    15. Owen, D. R.; Allerton, C. M. N.; Anderson, A. S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R. D.; Carlo, A.; Coffman, K. J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K. S.; Gibson, S. A.; Greasley, S. E.; Hurst, B. L.; Kadar, E. P.; Kalgutkar, A. S.; Lee, J. C..; Lee, J.; Liu, W.; Mason, S. W.; Noell, S.; Novak, J. J.; Obach, R. S.; Ogilvie, K.; Patel, N. C.; Pettersson, M.; Rai, D. K.; Reese, M. R.; Sammons, M. F.; Sathish, J. G.; Singh, R. S. P.; Steppan, C. M.; Stewart, A. E.; Tuttle, J. B.; Updyke, L.; Verhoest, P. R.; Wei, L.; Yang, Q.; Zhu, Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593, DOI: 10.1126/science.abl4784.
    16. Unoh, Y.; Uehara, S.; Nakahara, K.; Nobori, H.; Yamatsu, Y.; Yamamoto, S.; Maruyama, Y.; Taoda, Y.; Kasamatsu, K.; Suto, T.; Kouki, K.; Nakahashi, A.; Kawashima, S.; Sanaki, T.; Toba, S.; Uemura, K.; Mizutare, T.; Ando, S.; Sasaki, M.; Orba, Y.; Sawa, H.; Sato, A.; Sato, T.; Kato, T.; Tachibana, Y. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 2022, 65, 6499–6512, DOI: 10.1021/acs.jmedchem.2c00117.
    17. Wang, B.; Li, H. J.; Cai, M. M.; Lin, Z. X.; Ou, X. F.; Wu, S. H.; Cai, R. H.; Wei, Y. N.; Yang, F.; Zhu, Y. M.; Yang, Z. F.; Zhong, N. S.; Lin, L. Antiviral efficacy of RAY1216 monotherapy and combination therapy with ritonavir in patients with COVID-19: A phase 2, single centre, randomised, double-blind, placebo-controlled trial. eClinicalMedicine 2023, 63, 102189, DOI: 10.1016/j.eclinm.2023.102189.
    18. Jiang, X.; Su, H.; Shang, W.; Zhou, F.; Zhang, Y.; Zhao, W.; Zhang, Q.; Xie, H.; Jiang, L.; Nie, T.; Yang, F.; Xiong, M.; Huang, X.; Li, M.; Chen, P.; Peng, S.; Xiao, G.; Jiang, H.; Tang, R.; Zhang, L.; Shen, J.; Xu, Y. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Nat. Commun. 2023, 14, 6463, DOI: 10.1038/s41467-023-42102-y.
    19. Cao, B.; Wang, Y.; Lu, H.; Huang, C.; Yang, Y.; Shang, L.; Chen, Z.; Jiang, R.; Liu, Y.; Lin, L.; Peng, P.; Wang, F.; Gong, F.; Hu, H.; Cheng, C.; Yao, X.; Ye, X.; Zhou, H.; Shen, Y.; Liu, C.; Wang, C.; Yi, Z.; Hu, B.; Xu, J.; Gu, X.; Shen, J.; Xu, Y.; Zhang, L.; Fan, J.; Tang, R.; Wang, C. Oral simnotrelvir for adult patients with mild-to-moderate Covid-19. N. Engl. J. Med. 2024, 390, 230–241, DOI: 10.1056/NEJMoa2301425.
    20. Gordon, C. J.; Tchesnokov, E. P.; Woolner, E.; Perry, J. K.; Feng, J. Y.; Porter, D. P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from Severe Acute Respiratory Syndrome Coronavirus 2 with high potency. J. Biol. Chem. 2020, 295 (20), 6785−6797, DOI: 10.1074/jbc.RA120.013679.
    21. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z., Hu Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30 (3), 269–271, DOI: 10.1038/s41422-020-0282-0.
    22. Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu, H. Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R. W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T. F.; Paredes, R.; Sweeney, D. A.; Short, W. R.; Touloumi, G.; Lye, D. C.; Ohmagari, N.; Oh, M. D.; Ruiz-Palacios, G. M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M. G.; Atmar, R. L.; Creech, C. B.; Lundgren, J.; Babiker, A. G.; Pett, S.; Neaton, J. D.; Burgess, T. H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H. C.; ACTT-1 Study Group Members. Remdesivir for the treatment of COVID-19–final report. N. Engl. J. Med. 2020, 383, 1813–1826, DOI: 10.1056/NEJMoa2007764.
    23. Gottlieb, R. L.; Vaca, C. E.; Paredes, R.; Mera, J.; Webb, B. J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B. U.; Brown, M.; Hidalgo, A.; Sachdeva, Y.; Mittal, S.; Osiyemi, O.; Skarbinski, J.; Juneja, K.; Hyland, R. H.; Osinusi, A.; Chen, S.; Camus, G.; Abdelghany, M.; Davies, S.; Behenna-Renton, N.; Duff, F.; Marty, F. M.; Katz, M. J.; Ginde, A. A.; Brown, S. M.; Schiffer, J. T.; Hill, J. A; GS-US-540-9012 (PINETREE) Investigators. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N. Engl. J. Med. 2022, 386, 305–315, DOI: 10.1056/NEJMoa2116846.
    24. Sheahan, T. P.; Sims, A. C.; Zhou, S.; Graham, R. L.; Pruijssers, A. J.; Agostini, M. L.; Leist, S. R.; Schäfer, A.; Dinnon 3rd, K. H.; Stevens, L. J.; Chappell, J. D.; Lu, X.; Hughes, T. M.; George, A. S.; Hill, C. S.; Montgomery, S. A.; Brown, A. J.; Bluemling, G. R.; Natchus, M. G.; Saindane, M.; Kolykhalov, A. A.; Painter, G.; Harcourt, J.; Tamin, A.; Thornburg, N. J.; Swanstrom, R.; Denison, M. R.; Baric, R. S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 2020, 12, eabb5883, DOI: 10.1126/scitranslmed.abb5883.
    25. Jayk Bernal, A.; Gomes da Silva, M. M.; Musungaie, D. B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M. L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J. A.; Shamsuddin, H. H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J. R.; Johnson, M. G.; De Anda, C.; MOVe-OUT Study Group. N. Engl. J. Med. 2022, 386 (6), 509–520, doi: 10.1056/NEJMoa2116044.
    26. Barnes, C. O.; Jette, C. A.; Abernathy, M. E.; Dam, K. A.; Esswein, S. R.; Gristick, H. B.; Malyutin, A. G.; Sharaf, N. G.; Huey-Tubman, K. E.; Lee, Y. E.; Robbiani, D. F.; Nussenzweig, M. C.; West, A. P. Jr,; Bjorkman, P. J. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588 (7839), 682–687, DOI: 10.1038/s41586-020-2852-1.
    27. Bojadzic, D.; Alcazar, O.; Chen, J.; Chuang, S. T.; Condor Capcha, J. M.; Shehadeh, L. A.; Buchwald, P. Small-molecule inhibitors of the coronavirus spike: ACE2 protein–protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS infect. Dis. 2021, 7 (6), 1519–1534, DOI: 10.1021/acsinfecdis.1c00070.
    28. Yang, L. J.; Chen, R. H.; Hamdoun, S.; Coghi, P.; Ng, J. P. L.; Zhang, D. W.; Guo, X.; Xia, C.; Law, B. Y. K.; Wong, V. K. W. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding. Phytomedicine 2021, 87, 153591, DOI: 10.1016/j.phymed.2021.153591.
    29. Omotuyi, O.; Olatunji, O. M.; Nash, O.; Oyinloye, B.; Soremekun, O.; Ijagbuji, A.; Fatumo, S. Benzimidazole compound abrogates SARS-COV-2 receptor-binding domain (RBD)/ACE2 interaction in vitro. Microb. Pathog. 2023, 176, 105994, DOI: 10.1016/j.micpath.2023.
    30. Liu, X.; Jiang, L.; Li, L.; Lu, F.; Liu, F. Bionics design of affinity peptide inhibitors for SARS-CoV-2 RBD to block SARS-CoV-2 RBD-ACE2 interactions. Heliyon 2023, 9 (1), e12890, DOI: 10.1016/j.heliyon.2023.e12890.
    31. Palla, S. A.; Lee, C. W.; Chao, T. L.; Lo, H. L. V.; Liu, J. J.; Pan, M. Y. C.; Chiu, Y. T.; Lin, W. C.; Hu, C. W.; Yang, C. M.; Chen, Y. Y.; Fang, J. T.; Lin, S. W.; Lin, Y. T.; Lin, H. C.; Kuo, C. J.; Wang, L. H. C.; Chang, S. Y.; Liang, P. H. Synthesis, evaluation, and mechanism of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones as potent reversible SARS-CoV-2 entry inhibitors. Antiviral Res. 2023, 219, 105735, DOI: 10.1016/j.antiviral.2023.105735
    32. Li, C. W.; Chao, T. L.; Lai, C. L.; Lin, C. C.; Pan, M. Y.; Cheng, C. L.; Kuo, C. J.; Wang, L. H.; Chang, S. Y.; Liang, P. H. Systematic studies on the anti-SARS-CoV-2 mechanisms of tea polyphenol-related natural products. ACS Omega 2024, 9 (22), 23984−23997, DOI: 10.1021/acsomega.4c02392.
    33. Ip, J. D.; Wing-Ho Chu, A.; Chan, W. M.; Cheuk-Ying Leung, R.; Abdullah, S. M. U.; Sun, Y.; Kai-Wang To, K. Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. EBioMedicine 2023, 91, 104559, DOI: 10.1016/j.ebiom.2023.104559.
    34. Hu, Y.; Lewandowski, E.; Tan, H.; Zhang, X.; Morgan, R. T.; Zhang, X.; Jacobs, L. M. C.; Butler, S. G.; Gongora, M. V.; Choy, J.; Deng, X.; Chen, Y.; Wang, J. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. ACS Cent. Sci. 2023, 9 (8), 1658−1669, DOI: 10.1021/acscentsci.3c00538
    35. Gandhi, S.; Klein, J.; Robertson, A. J.; Pena-Hernández, M. A.; Lin, M. J.; Roychoudhury, P.; Lu, P.; Fournier, J.; Ferguson, D.; Bakhash, S. A. K. M.; Muenker, M. C.; Srivathsan, A.; Wunder, E. A., Jr; Kerantzas, N.; Wang, W.; Lindenbach, B.; Pyle, A.; Wilen, C. B.; Ogbuagu, O.; Greninger, A. L.; Iwasaki, A.; Schulz, W. L.; Ko, A. I. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nat. Commun. 2022, 13 (1), 1547, DOI: 10.1038/s41467-022-29104-y.
    36. Heyer, A.; Gunther, T.; Robitaille, A.; Lutgehetmann, M.; Addo, M. M.; Jarczak, D.; Kluge, S.; Aepfelbacher, M.; zur Wiesch, J. S.; Fischer, N.; Grundhoff, A. Remdesivir-induced emergence of SARS-CoV2 variants in patients with prolonged infection. Cell Rep. Med. 2022, 3 (9), No. 100735, DOI: 10.1016/j.xcrm.2022.100735.
    37. Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; Yu, Y.; Wang, P.; Zhang, Z.; Liu, P.; An, R.; Hao, X.; Wang, Y.; Wang, J.; Feng, R.; Sun, H.; Zhao, L.; Zhang, W.; Zhao, D.; Zheng, J.; Yu, L.; Li, C.; Zhang, N.; Wang, R.; Niu, X.; Yang, S.; Song, X.; Chai, Y.; Hu, Y.; Shi, Y.; Zheng, L.; Li, Z.; Gu, Q.; Shao, F.; Huang, W.; Jin, R.; Shen, Z.; Wang, Y.; Wang, X.; Xiao, J.; Xie, X. S. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602, DOI: 10.1038/s41586-022-04980-y.
    38. Valipour, M.; Hosseini, A.; Di Sotto, A.; Irannejad, H. Dual action anti-inflammatory/antiviral isoquinoline alkaloids as potent naturally occurring anti-SARS-CoV-2 agents: A combined pharmacological and medicinal chemistry perspective. Phytother. Res. 2023, 37, 2168–2186, DOI: 10.1002/ptr.7833.
    39. Ren, P.; Shang, W.; Yin, W.; Ge, H.; Wang, L.; Zhang, X.; Li, B.; Li, H.; Xu, Y.; Xu, E. H.; Jiang, H. L.; Zhu, L. L.; Zhang, L. K.; Bai, F. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacologica Sinica 2022, 43 (2), 483–493, DOI: 10.1038/s41401-021-00668-7.
    40. Zhang, Z. R.; Zhang, Y. N.; Zhang, H. Q.; Zhang, Q. Y.; Li, N.; Li, Q.; Deng, C. L.; Zhang, B.; Li, X. D.; Ye, H. Q. Berbamine hydrochloride potently inhibits SARS-CoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Negl. Trop. Dis. 2022, 16 (4), e0010363, DOI: 10.1371/journal.pntd.0010363.
    41. He, C. L.; Huang, L. Y.; Wang, K.; Gu, C. J.; Hu, J.; Zhang, G. J.; Xu, W.; Xie, Y. H.; Tang, N.; Huang, A. L. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Sig. Transduct. Target Ther. 2021, 6, 131, DOI: 10.1038/s41392-021-00531-5.
    42. Cortes-Clerget, M.; Yu, J.; Kincaid, J. R. A.; Walde, P.; Gallou, F.; Lipshutz, B. H. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chem. Sci. 2021, 12, 4237–4266, DOI: 10.1039/D0SC06000C.
    43. Kuo, C. J.; Chao, T. L.; Kao, H. C.; Tsai, Y. M.; Liu, Y. K.; Wang, L. H.; Hsieh, M. C.; Chang, S. Y.; Liang, P. H. Kinetic characterization and inhibitor screening for the proteases leading to identification of drugs against SARS-CoV-2. Antimicrob. Agents Chemother. 2021, 65 (4), No. e02577-20, DOI: 10.1128/ AAC.02577-20.
    44. Hsu, K. C.; Chen, Y. F.; Lin, S. R.; Yang, J. M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011, 12 (Suppl 1), S33, DOI: 10.1186/1471-2105-12-S1-S33.
    45. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220, DOI: 10.1038/s41586-020-2180-5.
    46. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An open chemical toolbox 2011. J. Cheminform. 2011, 3, 33, DOI: 10.1186/1758-2946-3-33.
    47. Lipinski, C. A.; Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
    48. Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. A freely accessible web-server for target directed lead molecule discovery. BMC bioinformatics 2012, 13, 1−13, DOI: 10.1186/1471-2105-13-S17-S7.
    49. Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072, DOI: 10.1021/acs.jmedchem.5b00104.’
    50. Ahlbrecht, H.; Fröhlich, J.; Habermalz, U.; Kröhnke, F. Zur struktur der alkaliprodukte aus N-phenacyl-isochinoliniumsalzen. Tetrahedron Lett. 1967, 37, 3649–3652, DOI: 10.1016/S0040-4039(01)89815.
    51. Katsuma, T.; Sekine, Y.; Hujiyama, K.; Kobayashi, Y. Studies on the reactions of heterocyclic compounds. IX. Syntheses of 1, 10b-dihydropyrrolo[2, 1-α]isoquinolines and 2, 3-dihydropyrrolo[2, 1-α]isoquinolines. Chem. Pharma. Bull. 1972, 20, 2701–2706, DOI: 10.1248/cpb.20.2701.
    52. Yang, M.-C.; Tang, X.; Liu, S.-W.; Deng, H.-Q.; Lei, J.-J.; Gao, Y.-J.; Han, B.; Cui, H.-L. K3PO4 promoted dipolar [3+3] cyclization: Direct synthesis of pyrazino[2,1-a]isoquinoline derivatives. Tetrahedron Lett. 2018, 59, 138–114, DOI: 10.1016/j.tetlet.2017.12.011.
    53. Huisgen, R.; Niklas, K. The chemistry of an isolable azomethine ylide. Heterocycles 1984, 22, 21–26, DOI: 10.3987/r-1984-01-0021.
    54. Kałuża, Z.; Bielawski, K.; Ćwiek, R.; Niedziejko, P., Kaliski, P. C2-Symmetric hemiaminal ethers and diamines: new ligands for copper-catalyzed desymmetrization of meso-1,2-diols and asymmetric Henry reactions. Tetrahedron: Asymmetry 2013, 24, 1435–1442, DOI: 10.1016/j.tetasy.2013.09.011.
    55. Xia, P.-J.; Sun, Y.-H.; Xiao, J.-A.; Zhou, Z.-F.; Wen, S.-S.; Xiong, Y.; Ou, G.-C.; Chen, X.-Q.; Yang, H. Regioselectivity-tunable self-1,3-dipolar [3+3] cyclizations of azomethine ylides to assemble dispirooxindole-piperazines. J. Org. Chem. 2015, 80, 11573–11579, DOI: 10.1021/acs.joc.5b02088.

    Part-II: 1. a) Y. Han, L. Zhou, C. Wang, S. Feng, R. Ma, and J-P. Wan, Chin. Chem. Lett., 2024, 35, 108977. b) Z. Wang, B. Zhao, Y. Liu, and J-P. Wan, Adv. Synth. Catal., 2022, 364, 1508. c) M-Z. Lu, J. Goh, M. Maraswami, Z. Jia, J-S. Tian, and T-P. Loh, Chem. Rev., 2022, 122, 17479. d) I. J. Amaye, R. D. Haywood, E. M. Mandzo, J. J. Wirick, and P. L. Jackson-Ayotunde,. Tetrahedron. 2021, 83, 131984.
    2. F. Wang, W. Sun, Y. Wang, Y. Jiang, and T-P. Loh, Org. Lett., 2018, 20, 1256.
    3. J-P. Wan, S. Zhong, L. Xie, X. Cao, Y. Liu, and L. Wei, Org. Lett., 2016, 18, 584.
    4. a) Y. Gao, Y. Liu, and J-P. Wan, J. Org. Chem., 2019, 84, 2243. b) Z. Yang, L. Hu, T. Cao, L. An, L. Li, T. Yang, and C. Zhou, New J. Chem., 2019, 43, 16441. c) X. Duan, X. Liu, X. Cuan, L. Wang, K. Liu, H. Zhou, X. Chen, H. Li, and J. Wang, J. Org. Chem., 2019, 84, 12366.
    5. a) Y. Xie, Z. Zhang, B. Zhang, N. He, M. Peng, S. Song, B. Wang, and F. Yu, J. Org. Chem. 2024, 89, 8521. b) G. S. Sorabad, and M. R, Maddani, New J. Chem., 2019, 43, 6563. c) H. Xu, P. Zhou, R. Hang, J. Zhou, L-L. Lu, Y. Shen, and F-C. Yu, Tetrahedron Letters. 2016, 57, 4965. d) N. G. Ramesh, E. H. Heijne, A. J. H. Klunder, and B. Zwanenburg, Tetrahedron. 2002, 58, 1361.
    6. a) T. Zhang, W. Yao, J-P. Wan, and Y. Liu, Adv. Synth. Catal., 2021, 363, 4811. b) B. Zhang, D. Liu, Y. Sun, Y. Zhang, J. Feng, and F. Yu, Org. Lett., 2021, 23, 3076. c) Y. Lin, J. Jin, C. Wang, J-P. Wan, and Y. Liu, J. Org. Chem., 2021, 86, 12378. d) T. Luo, J-P. Wan, and Y. Liu, Org. Chem. Front., 2020, 7, 1107. e) Y. Siddaraju, and K. R. Prabhu, J. Org. Chem., 2017, 82, 3084. f) Y. Yuan, W. Hou, D. Zhang-Negrerie, K. Zhao, and Y. Du, Org. Lett., 2014, 16, 5410.
    7. a) J-i. Yamaguchi, Y. Akagi, R. Koike, K. Katou, T. Katakura, T. Hanase, and T. Homma, Tetrahedron Letters. 2024, 135, 154876. b) X. Li, Z. Chen, Y. Liu, N. Luo, W. Chen, C. Liu, F. Yu, and J. Huang, J. Org. Chem., 2022, 87, 10349. c) H. Wu, T. Luo, J-P. Wan, J. Jiang, and Y. Liu, Eur. J. Org. Chem., 2022, e202200552. d) T. Liu, L. Wei, B. Zhao, Y. Liu, and J-P. Wan, J. Org. Chem., 2021, 86, 9861. e) Z. Jiang, J. Zhou, H. Zhu, H. Liu, and Y. Zhou, Org. Lett., 2021, 23, 4406. f) J. Chen, P. Guo, J. Zhang, J. Rong, W. Sun, Y. Jiang, and T-P. Loh, Angew. Chem. Int. Ed., 2019, 58, 12674. g) J. Sun, X. Cheng, J. K. Mansaray, W. Fei, J. Wan, and W. Yao, Chem. Commun., 2018, 54, 13953.
    8. M. Baidya, D. Maiti, L. Roy, and S. D. Sarkar, Angew. Chem. Int. Ed., 2022, 61, e202111679. b) L. Fu, J-P. Wan, L. Zhou, and Y. Liu, Chem. Commun., 2022, 58, 1808. c) H. Guo, L. Tian, Y. Liu, and J-P. Wan, Org. Lett., 2022, 24, 228. d) L. Fu, Y. Liu, and J-P. Wan, Org. Lett., 2021, 23, 4363. e) S. Mkrtchyan, and V. O. Iaroshenko, Chem. Commun., 2020, 56, 2606. f) S. Zhou, D-Y. Liu, S. Wang, J-S. Tian, and T-P. Loh, Chem. Commun., 2020, 56, 15020. g) M-N. Zhao, Z-J. Zhang, Z-H. Ren, D-S. Yang, and Z-H. Guan, Org. Lett., 2018, 20, 3088. h) Y-X. Jiao, L-S. Wei, C-Y. Zhao, K. Wei, D-L. Mo, C-X. Pan, and G-F. Su, Adv. Synth. Catal., 2018, 360, 4446. i) S. Tang, X. Gao, and A. Lei, Chem Commun., 2017, 53, 3354. j) J. Liu, W. Wei, T. Zhao, X. Liu, J. Wu, W. Yu, and J. Chang, J. Org. Chem., 2016, 81, 9326. k) C-J. Wu, Q-Y. Meng, T. Lei, J-J. Zhong, W-Q. Liu, L-M. Zhao, Z-J. Li, B. Chen, C-H. Tung, and L-Z. Wu, ACS Catal., 2016, 6, 4635.
    9. a) R. Kumar, N. Saha, P. Purohit, S. K. Garg, K. Seth, V. S. Meena, S. Dubey, K. Dave, R. Goyal, S. S. Sharma, U. C. Banerjee, and A. K. Chakraborti, European Journal of Medicinal Chemistry. 2019, 182, 111601. b) M. M. Ghorab, F. A. Ragab, H. I. Heiba, M. G. EI-Gazzar, and M. G. M. EI-Gazzar, Bioorg. Med. Chem. Lett. 2018, 28, 1464. c) M. Cindric, M. Rubcic, T. Hrenar, J. Pisk, D. Cvijanovic, J. Lovric, and V. Vrdoljak, J. Mol. Struct. 2018, 1154, 636. d) P. V. Sowmya, B. Poojary, B. C. Revanasiddappa, M. Vijayakumar, P. Nikil, and V. Kumar, Res Chem Intermed., 2017, 43, 7399.
    10. a) K. Keskar, C. Zepeda-Velazquez, C. B. Dokuburra, H. A. Jenkins, and J. McNulty, Chem. Commun., 2019, 55, 10868. b) M. J. Gonzalez-Soria, and F. Alonso, Adv. Synth. Catal., 2019, 361, 5005. c) A. Pal, and S. R. Hussaini, ACS Omega., 2019, 4, 269. d) Y-P. Liu, C-J. Zhu, C-C. Yu, A-E. Wang, and P-Q. Huang, Eur. J. Chem., 2019, 7169. e) X. Duan, S. Yang, C. Yao, F. Jia, L. Wang, W. Li, Z. Meng, Y. Zhou, and X. Li, ChemistrySelect., 2019, 4, 12992. f) Z. Zheng, Q. Tao, Y. Ao, M. Xu, and Y. Li, Org. Lett., 2018, 20, 3907. g) A. Leggio, A. Comande, E. L. Belsito, M. Greco, L. L. Feudo, and A. Liguori, Org. Biomol. Chem., 2018, 16, 5677. h) Y-W. Kang, Y. J. Cho, S. J. Han, and H-Y. Jang, Org. Lett., 2016, 18, 272. i) W. Shi, S. Sun, M. Wu, B. Catano, W. Li, J. Wang, H. Guo, and Y. Xing, Tetrahedron Letters. 2015, 56, 468. j) S. M. Kim, D. Lee, and S. H. Hong, Org. Lett., 2014, 16, 6168.
    11. T. Miura, Y. Funakoshi, T. Tanaka, M. Murakami, Org. Lett. 2014, 16, 2760.
    12. S. Suresh, P. B. Patil, P-H. Yu, C-C. Fang, Y-Z. Weng, V. Kavala, C-F. Yao, Adv. Synth. Catal. 2021, 363, 4915.
    13. a) S. A. Dhabale, S. Kumar, N. Bhanwala and G. L. Khatik, Current Organic Chemistry, 2023, 27, 1471. b) J. Schimer, P. Cígler, J. Veselý, K. G. Šašková, M. Lepšík, J. Brynda, P. Řezáčová, M. Kožíšek, I, Císařová, H. Oberwinkler, H-G. Kraeusslich and J. Konvalinka, J. Med. Chem. 2012, 55, 10130. c) L-Z. Wang, X-Q. Li, and Y-S. An, Org. Biomol. Chem., 2015, 13, 5497.
    14. S. Farooq, Z. Ngaini, J Heterocyclic Chem. 2021, 58, 1914. b) R. Jamatia, A. Gupta, B. Dam, M. Saha and A. K. Pal, Green Chem., 2017, 19, 1576. c) M. Kodomari, T. Noguchi and T. Aoyama, SYNTHETIC COMMUNICATIONS 2004, 34, 1783.
    15. a) F. K. Sarkar, A. Gupta, R. Jamatia, J. M. H. Anal and A. K. Pal, New J. Chem., 2021, 45, 19553. b) K. J. Tamuli and M. Bordoloi, ChemistrySelect 2020, 5, 1353. c) M. Jeganathan and K. Pitchumani, ACS Sustainable Chem. Eng. 2014, 2, 1169. d) C-W. Kuo, C-C Wang, V. Kavala and C-F. Yao, Molecules 2008, 13, 2313. e) S. D. Sharma, P. Gogoi and D. Konwar, Green Chem., 2007, 9, 153. f) R. Kumar, P. Chaudhary, S. Nimesh, A. K. Verma, R. Chandra, Green Chem., 2006, 8, 519.
    16. L. Feray, P. Perfetti, M. Bertrand, Tetrahedron. 2009, 65, 8733.

    Part-III: a) D. P. Pace, R. Robidas, U. P. N. Tran, C. Y. Legault, T. V. Nguyen, J. Org. Chem. 2021, 86, 8154; b) D. Von der Heiden, S. Bozkus, M. Klussmann, M. Breugst, J. Org. Chem. 2017, 82, 4037; c) M. S. Yusubov, V. V. Zhdankin, Resour.-Effic. Technol. 2015, 1, 49; d) Y.-M. Ren, C. Cai, R. C. Yang, RSC Adv. 2013, 3, 7182.
    2. a) B. Gabriele, R. Mancuso, L. Veltri, Chem. Eur. J. 2016, 22, 5056; b) J. Muzart, Tetrahedron: Asymmetry 2014, 25, 697; c) M. Enders, R. W. Baker, Curr. Org. Chem. 2006, 10, 937.
    3. a) A. K. Kahlon, A. S. Negi, R. Kumari, K. K. Srivasta- va, S. Kumar, M. P. Darokar, A. Sharma, Appl. Micro- biol. Biotechnol. 2014, 98, 2041; b) D. Chanda, D. Saikia, J. K. Kumar, J. P. Thakur, J. Agarwal, C. S. Chanotiya, K. Shanker, A. S. Negi, Bioorg. Med. Chem. Lett. 2011, 21, 3966.
    4. M. Voets, I. Antes, C. Scherer, U. Müller-Vieira, K. Biemel, S. Marchais-Oberwinkler, R. W. Hartmann, J. Med. Chem. 2006, 49, 2222.
    5. G. Hefner, V. Stieffenhofer, S. Gabriel, G. Palmer, K.-M. Müller, J. Röschke, C. Hiemke, Eur. J. Clin. Pharmacol. 2015, 71, 165.
    6. a) K. Yamada, M. J. Lear, T. Yamaguchi, S. Yamashita, I. D. Gridnev, Y. Hayashi, M. Hirama, Angew. Chem. Int. Ed. 2014, 53, 13902; b) A. L. Lane, S.-J. Nam, T. Fukuda, K. Yamanaka, C. A. Kauffman, P. R. Jensen, W. Fenical, B. S. Moore, J. Am. Chem. Soc. 2013, 135, 4171. a) J. Jongcharoenkamol, P. Chuathong, Y. Amako, M. Kono, K. Poonswat, S. Ruchirawat, P. Polypradith, J. Org. Chem. 2018, 83, 13184; b) M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380; c) H. Wang, Y.-L. Zhao, L. Li, S.-S. Li, Q. Liu, Adv. Synth. Catal. 2014, 356, 3157; d) K. N. Boblak, D. A. Klumpp, J. Org. Chem. 2014, 79, 5852; e) K. B. Somai Magar, Y. R. Lee, Org. Lett. 2013, 15, 4288; D. H. Dethe, G. Murhade, Org. Lett. 2013, 15, 429; D. H. Dethe, G. M. Murhade, Chem. Commun. 2013, 49, 8051; h) P. Sarnpitak, K. Trongchit, Y. Kostenko, S. Sathalalai, M. P. Gleeson, S. Ruchirawat, P. Polypradith, J. Org. Chem. 2013, 78, 8281; i) D. Eom, S. Park, Y. Park, T. Ryu, P. H. Lee, Org. Lett. 2012, 14, 5392; j) F. Zhou, X. Han, X. Lu, J. Org. Chem. 2011, 76, 1491.
    7. a) S. Yang, Z. Li, X. Jian, C. He, Angew. Chem. Int. Ed. 2009, 48, 3999; b) M. Tobisu, H. Nakai, N. Chatani, J. Org. Chem. 2009, 74, 5471.
    8. Z. A. Khan, T. Wirth, Org. Lett. 2009, 11, 229.
    9. B. G. Das, A. Chirila, M. Tromp, J. N. H. Reek, B. de Bruin, J. Am. Chem. Soc. 2016, 138, 8968.
    10. Q. Zhou, S. Li, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2017, 56, 16013.
    11. Z. Wang, Y. Li, F. Chen, P.-C. Qian, J. Cheng, Chem. Commun. 2021, 57, 1810.
    12. G. Ramesh, R. Balamurugan, J. Org. Chem. 2021, 86, 16278.
    13. L. A. Marsili, J. L. Pergomet, V. Gandon, M. J. Riveira, Org. Lett. 2018, 20, 7298.
    14. a) S. Suresh, V. Kavala, C.-F. Yao, J. Org. Chem. 2023, 88, 3666; b) S. Suresh, H.-S. Chien, C.-H. Chen, H.-Y. Tsai, D.-R. Chung, V. Kavala, C.-F. Yao, J. Org. Chem. 2023, 88, 17505; c) V. Bandi, V. Kavala, A. Konala, C.- H. Hsu, B. K. Villuri, S. R. Reddy, L. Lin, C.-W. Kuo, C.-F. Yao, J. Org. Chem. 2019, 84, 3036; d) D. Janreddy, V. Kavala, T. Kotipalli, R. R. Rajawinslin, C.-W. Kuo, W.-C. Huang, C.-F. Yao, Org. Biomol. Chem. 2014, 12, 8247; e) S. D. Gawande, V. Kavala, M. R. Zanwar, C.-W. Kuo, H.-N. Huang, C.-H. He, T.-S. Kuo, C.-F. Yao, Adv. Synth. Catal. 2013, 355, 3022; f) V. Kavala, C. Lin, C.-W. Kuo, H. Fang, C.-F. Yao, Tetrahedron. 2012, 68, 1321; g) C.-M. Chu, W.-J. Huang, J.-T. Liu, C.-F. Yao, Tetrahedron Lett. 2007, 48, 6881; h) C. Lin, J. Hsu, M. N. V. Sastry, H. Fang, Z. Tu, J.-T. Liu, C.-F. Yao, Tetrahedron 2005, 61, 11751.
    15. D.-Y. Li, A. Wang, X.-P. Zhu, W. Feng, P.-N. Liu, Chem. Commun. 2019, 55, 3339.
    16. CCDC 2298811 (3 al), 2298812 (5 aa), 2298813 (4 ag), and 2298814 (6 aa), contain the supplementary crystallo- graphic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.ac.uk./data_request/cif.
    17. Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L-B. Green Chem., 2018, 20, 3408.
    18. Yuan, J.; Liu, C.; Chen, Y.; Zhang, Z.; Yan, D.; Zhang, W. Tetrahedron 2019, 75, 269.
    19. a) Ban, K.; Yamamoto, Y.; Sajiki, H.; Sawama, Y. Org. Biomol. Chem., 2020, 18, 3898. B) Xu, S.; Huang, X.; Hong, X.; Xu, B. Org. Lett., 2012, 14, 4614.
    20. Reamtong, O.; Lapmanee, S.; Tummatorn, J.; Palavong, N.; Thonhsornkleeb, C.; Ruchirawat, S. ACS Med. Chem. Lett. 2021, 12, 1449.
    21. Zhang, W.; Ning, F.; Varadi, L.; Hibbs, D. E.; Platts, J. A.; Nyerges, M.; Anderson, R. J.; Groundwater, P. W. Tetrahedron 2014, 70, 3621.

    下載圖示
    QR CODE