簡易檢索 / 詳目顯示

研究生: 陳龍賓
論文名稱: 高分子對鈦酸鋇分散性能與電性之研究
指導教授: 許貫中
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 216
中文關鍵詞: 鈦酸鋇聚電解質分散合成介電性質
論文種類: 學術論文
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈦酸鋇因具有強鐵電、壓電和介電等特性,為製造電容器、電感器、壓電感測器之重要原料。製程上鈦酸鋇粉末須先加入溶劑以配成漿料,目前所使用的溶劑分為水及有機溶劑兩類,基於環保與降低成本,近年來水系漿料的製備已引起矚目。為製備分散良好之漿體,常需加入聚電解質作為分散劑。隨著漿體pH值增加,高分子吸附量減少,但降低漿體pH值,高分子解離度降低、鋇離子溶出量增加。為了製備分散穩定的漿料,值得合成出具有良好分散效能且減少鋇離子溶出的高分子。
本研究主要合成兩種類水溶性高分子:一為陰離子型之聚(甲基丙烯醯胺/甲基丙烯酸鹽) (PMMN),係以甲基丙烯醯胺 (MAM) 及甲基丙烯酸 (MAN) 為單體,在鹼性環境下經自由基聚合反應所合成的共聚物。另一為兩性共聚物,先以氯醋酸鈉與N-(4-乙烯苯基)-N,N-二甲基胺製備一N-(4-乙烯苯基)-N,N-二甲基乙酸銨(DMVBAE)之兩性單體。以DMVBAE和甲基丙烯酸經聚合反應得到聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯酸鹽) (PVM);另外,DMVBAE與甲基丙烯醯胺、甲基丙烯酸可製得聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯醯胺/甲基丙烯酸鹽) (PVMM)。所得產物由IR、1H-NMR光譜確認其結構,GPC分析其分子量。利用電位滴定法得到高分子在不同pH值下的解離率及PMMN中單體組成比例。由PVM的1H-NMR光譜圖可知兩單體含量,而PVMM可經由元素分析法求得單體組成。
兩類型高分子添加於鈦酸鋇漿體,藉量測漿體黏度、記錄沈降行為、分析漿體粒徑、觀察生胚微結構及計算胚體密度來評估其分散效能並與PMAAN做為對照。結果顯示添加這些高分子可得到分散良好的漿體,最佳劑量均為2mg/g BT。由吸附實驗和粒子界達電位測定結果顯示PMMN(60)含60wt%甲基丙烯醯胺單體有最大的羧基吸附量及最低的界達電位值。PVM、PVMM為兩性高分子,在鹼性環境下較易吸附於粒子表面,其中PVMM含醯胺基更易吸附於粒子,吸附量大於PVM。這些高分子吸附於粒子上均可產生電荷斥力與立體阻障而使懸浮液達到穩定的狀態。引用DLVO理論計算粒子之總電位能,所得結果與實驗相符。IR、UV/vis光譜圖中官能基吸收峰的位移提供粒子與高分子交互作用的證據。量測溶液中鋇離子濃度, PMMN、PVM和PVMM結構中含四級胺和醯胺基等官能基較容易吸附於粒子上,吸附量增加或粒子表面有較大的高分子覆蓋率,可抑制鋇離子溶出,因此減少溶液中鋇離子濃度。添加PMMN、PVM及PVMM做為分散劑可得到較好的分散效果,粒子堆積緻密,經燒結後,可增加胚體介電常數值與降低介電損失值。

第一章 緒論..............................................................................................1 第二章 文獻探討......................................................................................4 2.1 鈦酸鋇簡介.......................................................................................4 2.1.1 鈦酸鋇的合成..............................................................................4 2.1.2 鈦酸鋇之相圖及結構.……………….…………………………5 2.1.3 鈦酸鋇電性之研究......................................................................5 2.2 水溶性高分子...................................................................................9 2.2.1 界面活性劑的種類與應用..........................................................9 2.2.2 高分子結構對陶瓷粉體分散性能的影響……………………10 2.2.3 共聚合反應的動力學…………………………………………12 2.2.4 高分子的解離與吸附構形……………………………………19 2.3 粒子與高分子的特性…………………………………………….23 2.3.1 粒子的凝聚……………………………………………………23 2.3.2 粒子本身表面電荷的來源……………………………………24 2.3.3 高分子的吸附使粒子帶電……………………………………24 2.3.4 Langmuir單層吸附模式……………………………………....25 2.4 分散機制………………………………………………………….28 2.4.1 靜電排斥穩定理論……………………………………………28 2.4.2 立體阻障效應…………………………………………………34 2.4.3 耗乏穩定………………………………………………………34 2.5 分散性能評估…………………………………………………….36 2.5.1 流變分析………………………………………………………36 2.5.2 沈降行為………………………………………………………38 2.5.3 粒子電位……………………………………………………....40 2.6 鋇離子溶出……………………………………………………….41第三章 實驗裝置與步驟……………………………………………....44 3.1 實驗材料與藥品.............................................................................44 3.1.1鈦酸鋇(BT)粉末……………………………………………….44 3.1.2藥品.............................................................................................44 3.2儀器設備…………………………………………………………..45 3.3 BT粉末之XRD圖……………………………………………….46 3.4 高分子結構鑑定及性質分析………………………………….....48 3.4.1 核磁共振(NMR)光譜………………………………………....48 3.4.2 紅外線(IR)光譜…………………………………………….....48 3.4.3 聚合物之單體組成及解離率………………………………....48 3.4.4 元素分析……………………………………………………....49 3.4.5 凝膠滲透層析(GPC)分析…………………………………….50 3.4.6 高分子固含量測量……………………………………………51 3.5 高分子對BT漿體分散性能與機制研究………..………………52 3.5.1 流變性質………………………………………………………52 3.5.2 沈降行為………………………………………………………52 3.5.3 粒徑分析………………………………………………………52 3.5.4 胚體密度………………………………………………………52 3.5.5 微結構觀察............................................................................... 53 3.5.6 吸附量…………………………………………………………53 3.5.7 界達電位………………………………………………………54 3.6 高分子對漿體鋇離子溶出量的影響…………………………….54 3.7 胚體介電常數與介電損失……………………………………….55 第四章 聚(甲基丙烯醯胺/甲基丙烯酸銨鹽)的合成及對鈦酸鋇漿 體分散性能與機制之研究........................................................57 4.1 共聚物的合成…………………………………………………….58 4.2 共聚物分析……………………………………………………….59 4.2.1 共聚物結構鑑定………………………………………………59 4.2.2 共聚物的反應機構……………………………………………62 4.2.3 共聚物的解離與組成分析……………………………………65 4.3 分散性能評估…………………………………………………….70 4.3.1 流變性質………………………………………………………70 4.3.2 流動性…………………………………………………………72 4.3.3 粒徑分析………………………………………………………75 4.3.4 沈降行為………………………………………………………79 4.3.5 生胚密度………………………………………………………88 4.3.6 微結構觀察……………………………………………………90 4.4 分散機制之研究………………………………………………….94 4.4.1 高分子吸附量…………………………………………………94 4.4.2 高分子對粒子界達電位的影響……………………………..112 4.4.3 高分子吸附於粒子之表面化學……………………………..120 4.4.4 DLVO理論之應用…….……………………………………..123 4.5 鋇離子溶出量…………………………………………………...129 4.6 燒結體之電性…………………………………………………...145 4.7 結論…………………………………………………...…………151 第五章 含芳香環之兩性共聚物的合成及對鈦酸鋇漿料穩定性之 研究..........................................................................................152 5.1 共聚物的合成…………………………………………………...152 5.1.1 聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯酸鹽) (PVM)的合成…………….……..……………………………152 5.1.2聚(N-(4-乙烯苯基)-N,N-二甲基乙酸銨/甲基丙烯醯胺/甲基 丙烯酸鹽)(PVMM)的合成…......……………….…………...153 5.2 共聚物分析……………………………………………………...155 5.2.1 共聚物結構鑑定……………………………………………..155 5.2.2 共聚物組成…………………………………………………..160 5.2.3 共聚物的解離行為…………………………………………..161 5.2.4 共聚物分子量………………………………………………..165 5.3 分散性能評估…………………………………………………...168 5.3.1 流變性質……………………………………………………..168 5.3.2 沈降行為……………………………………………………..171 5.3.3 粒徑分析……………………………………………………..174 5.3.4 微結構觀察…………………………………………………..177 5.3.5 生胚密度……………………………………………………..180 5.4分散機制之研究…………………………………………………181 5.4.1 高分子吸附量………………………………………………..181 5.4.2 高分子對粒子界達電位的影響……………………………..190 5.4.3 電雙層理論(DLVO)的應用………………………………….198 5.5 鋇離子溶出量…………………………………………………...204 5.6 介電性質………………………………………………………...210 5.7 結論…………………………………………………………….. 214 第六章 總結…………………………………………………………..215 參考資料…….………………………………………………………...217

1. G. Y. Carlos, B. R. Heberto, M. Froylan, “Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant,” Ceram. Int., 26, 2000, 609-16.
2. J. K. Lee, K. S. Hong, J. W. Jang, “Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics,” J. Am. Ceram. Soc., 84(9), 2001, 2001-06.
3. D. H. Yoon, B. I. Lee, “Processing of barium titanate tapes with different binders for MLCC applications-part 1: Optimization using design of experiments,” J. Euro. Ceram. Soc., 24, 2004, 739-52.
4. D. H. Yoon, B. I. Lee, “Effects of excess barium ions on aqueous barium titanate tape properties,” J. Am. Ceram. Soc., 87(6), 2004, 1066-71.
5. V. Kumar, “Solution-precipitation of fine powders of barium titanate and strontium titanate,” J. Am. Ceram. Soc., 82(10), 1999, 2580-84.
6. J. Davies, J. G. P. Binner, “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions,” J. Euro. Ceram. Soc., 20, 2000, 1539-53.
7. A. Tsetsekou, C. Agrafotis, A. Milias, “Optimization of the rheological properties of alumina slurries for ceramic processing applications Part Ι : Slip casting,” J. Euro. Ceram. Soc., 21, 2001, 363-73.
8. D. M. Liu, “Influence of dispersant on powder dispersion and properties of zirconia green compacts,” Ceram. Int., 26, 2000, 279-87.
9. M. C. B. Lopez, B. Rand, F. L. Riley, “Polymeric stabilization of aqueous suspensions of barium titanate Part Ι : Effect of pH,” J. Euro. Ceram. Soc., 20, 2000, 1579-86.
10. L. Besra, D. K. Sengupta, B. P. Singh, S. Bhattacharjee, “A novel method based on capillary suction time (CST) for assessment of dispersion characteristics of suspensions,” J. Am. Ceram. Soc., 88(1), 2005, 109-13.
11. S. Chibowski, E. O. Mazur, J. Patkowski, “Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide-polyacrylic acid,” Mater. Chem. Phys., 93, 2005, 262-71.
12. Y. L. Song, X. L. Liu, J. F. Chen, “The maximum solid loading and viscosity estimation of ultra-fine BaTiO3 aqueous suspensions,” Colloids surf A: Physicochem. Eng. Aspects, 247, 2004, 27-34.
13. G. H. Kirby, D. J. Harris, Q. Li, J. A. Lewis, “Poly(acrylic acid)-poly(ethylene oxide) comb polymer effects on BaTiO3 nanoparticle suspension stability,” J. Am. Ceram. Soc., 87(2), 2004, 181-86.
14. F. Nsib, N. Ayed, Y. Chevalier, “Dispersion of hematite suspensions with sodium polymethacrylate dispersants in alkaline medium,” Colloids Surf A: Physicochem. Eng. Aspects, 286, 2006, 17-26.
15. D. H. Yoon, B. I. Lee , P. Badheka, X. Wang, “Barium ion leaching from barium titanate powder in water,” J. Mater. Sci. : Mater. In Electronics 14, 2003, 165-69.
16. C. W. Chiang, J. H. Jean, “Effects of barium dissolution on dispersing aqueous barium titanate suspensions,” Mater. Chem. Phys., 80, 2003, 647-55.
17. 吳杏璇,添加陰離子型分散劑之鈦酸鋇漿體在不同pH值下的分散行為,師大化學所碩士論文,2004.
18. K. S. Mazdiyasni, “Fine particle peroveskite processing,” J. Am. Ceram. Soc., Bull., 63(4), 1984, 591-94.
19. 高濂、李蔚,奈米陶瓷,五南圖書有限公司,2003.
20. K. W. Kirby, B. A. Wechsler, “Phase relations in barium titanate-titanium oxide system,” J. Am. Ceram. Soc., 74(8), 1991, 1841-47.
21. 吳朗,介電陶瓷,全欣資訊圖書,1994.
22. C. G. Yanez, H. B. Ramirez, F. Martinez, “Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant,” Ceram. Int., 26, 2000, 609-16.
23. A. C. Caballero, J. F. Fernandez, C. Moure, P. Duran, “ZnO-doped BaTiO3 : Microstructure and electrical properties,” J. Euro. Ceram. Soc., 17, 1997, 513-23.
24. 翁震良,鈦酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究,台大材料所碩士論文,2000.
25. H. T. Martirena, J. C. Burfoot, “Grain-size effect on properties of some ferroelectric ceramics,” J. Phys., 7, 1974, 3182-92.
26. G. Arlt, D. Hennings, “Dielectric properties of fine-grained barium titanate,” J. Appl. Phys., 58, 1985, 1619-25.
27. C. Shih, B. Lung, M. Hon, “Colloidal processing of titanium nitride with poly(methacrylic acid) polyelectrolyte,” Mater. Chem. Phy., 60, 1999, 150-57.
28. E. Brzozowski, M. S. Castro, C. R. Foschini, B. Stojanovic, “Secondary phases in Nb-doped BaTiO3 ceramics,” Ceram. Int., 28, 2002, 773-77.
29. C. Miot, C. Proust, E. Husson, “Dense ceramics of BaTiO3 produced from powders prepared by a chemical process,” J. Euro. Ceram. Soc., 15, 1995, 1163-70.
30. 吳玉祥,鈦酸鋇製程與結晶構造分析之研究,台大材料所博士論文,1994.
31. P. Molyneux, Water-Soluble Synthetic Polymers: Properties and Behavior; CRC Press: Boca Raton, 1984.
32. I. Piirma, Polymeric Surfactants, Marcel Dekker: New York, 1992.
33. K. C. Hsu, K. L. Ying, L. P. Chen, B. Y. Yu, W. C. J. Wei, “Dispersion properties of BaTiO3 colloids with amphoteric polyelectrolytes,” J. Am. Ceram. Soc., 88(3), 2005, 524-29.
34. X. Wang, B. I. Lee, L. Mann, “Dispersion of barium titanate with polyaspartic acid in aqueous media,” Colloids Surf. A: Physicochem. Eng. Aspects, 202, 2002, 71-80.
35. M. C. Blanco-Lopez, B. Rand, F. L. Riley, “The properties of aqueous phase suspensions of barium titanate,” J. Euro. Ceram. Soc., 17, 1997, 281-87.
36. J. Zhao, X. Wang, Z. Gui, L. Li, “Dispersion of barium titanate with poly(acrylic acid-co-maleic acid) in aqueous media,” Ceram. Int., 30, 2004, 1985-88.
37. M. R. B. Romdhane, S. Baklouti, J. Bouaziz, T. Chartier, J. F. Baumard, “Dispersing properties of copolymers able to act as binders,” J. Am. Ceram. Soc., 89(1), 2006, 104-09.
38. P. Marco, J. Llorens, “Adsorption of some linear copolymers onto kaolin particles in concentrated suspensions,” Colloids Surf. A: Physicochem. Eng. Aspects, 270, 2005, 291-95.
39. E. Laarz, A. Kauppi, K. M. Andersson, A. M. Kjeldsen, L. Bergstrom, “Dispersing multi-component and unstable powders in aqueous media using comb-type anionic polymers,” J. Am. Ceram. Soc., 89(6), 2006, 1847-52.
40. S. Baklouti, M. R. Ben Romdhane, S. Boufi, C. Pagnoux, T. Chartier, J. F. Baumard, “Effect of copolymer dispersant structure on the properties of alumina suspensions,” J. Euro. Ceram. Soc., 23, 2003, 905-11.
41. B. Jachimska, Z. Adamczyk, “Characterization of rheological properties of colloidal zirconia,” J. Euro. Ceram. Soc., 27, 2007, 2209-15.
42. M. C. B. Lopez, B. Rand, F. L. Riley, “Polymeric stabilization of aqueous suspensions of barium titanate Part Ι : Effect of pH,” J. Euro. Ceram. Soc., 20, 2000, 1579-86.
43. M. Vamvakaki, N. C. Billingham, S. P. Armes, J. F. Watts, S. J. Greaves, “Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media,” J. Mater. Chem., 11, 2001, 2437-44.
44. M. R. B. Romdhane, T. Chartier, S. Baklouti, J. Bouaziz, C. Pagnoux, J. F. Baumard, “A new processing aid for dry-pressing: A copolymer acting as dispersant and binder,” J. Eur. Ceram. Soc., 27, 2007, 2687-95.
45. J. Zhang, Q. Xu, H. Tanaka, M. Iwasa, D. Jiang, “Improvement of the dispersion of Al2O3 slurries using EDTA-4Na,” J. Am. Ceram. Soc., 89(4), 2006, 1440-42.
46. S. Farrokhpay, G. E. Morris, D. Fornasiero, P. Self, “Effects of chemical functional groups on the polymer adsorption behavior onto titania pigment particles,” J. Colloid Interf. Sci., 274, 2004, 33-40.
47. A. S. Deliormanlı, E. Celik, M. Polat, “Adsorption of anionic polyelectrolyte and comb polymers onto lead magnesium niobate,” Colloids Surf. A: Physicochem. Eng. Aspects, 316, 2008, 202-09.
48. C. H. Chen, K. C. Hsu, “Dispersion properties of BaTi4O9/Ba2Ti9O20 colloids with amphoteric polyelectrolytes,” J. Euro. Ceram. Soc., 27, 2007, 463-68.
49. K. C. Hsu, K. L. Ying, L. P. Chen, B. Y. Yu, W. C. Wei, “Dispersion properties of BaTiO3 colloids with amphoteric polyelectrolytes,” J. Am. Ceram. Soc., 88(3), 2005, 524-29.
50. F. Nsib, N. Ayed, Y. Chevalier, “Comparative study of the dispersion of three oxide pigments with sodium polymethacrylate dispersants in alkaline medium,” Prog. Org. Coat., 60, 2007, 267-80.
51. M. Iijima, N. Sato, M. Tsukada, H. Kamiya, “Dispersion Behavior of Barium Titanate Nanoparticles Prepared by Using Various Polycarboxylic Dispersants,” J. Am. Ceram. Soc., 90(9), 2007, 2741-46.
52. J. H. Jean, H. R. Wang, “Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid),” J. Am. Ceram. Soc., 81(6), 1998, 1589-99.
53. G. Bertrand, C. Filiatre, H. Mahdjoub, A. Foissy, C. Coddet, “Influence of Slurry Characteristics On the Morphology of Spray-dried Alumina Powders,” J. Eur. Ceram. Soc., 23, 2003, 263-71.
54. L. Wang, W. Sigmund, F. Aldinger, “Systematic Approach for Dispersion of Silicon Nitride Powder in Organic Media: II, Dispersion of the Powder,” J. Am. Ceram. Soc., 83(4), 2000, 697-702.
55. L. C. Guo, Y. Zhang, N. Uchida, K. Uematsu, “Influence of Temperature on Stability of Aqueous Alumina Slurry Containing Polyelectrolyte Dispersant,” J. Eur. Ceram. Soc., 17, 1997, 345-50.
56. J. Sun, L. Bergstrom, L. Gao, “Effect of Magnesium Ions on the Adsorption of Poly(acrylic acid) onto Alumina,” J. Am. Ceram. Soc., 84(11), 2001, 2710-12.
57. M. P. Stevens, Polymer Chemistry, Oxford University Press, Inc., New York, 1999.
58. H. Y. Chen, W. C. Wei, K. C. Hsu, C. S. Chen, “Adsorption of PAA on the α-Al2O3 surface,” J. Am. Ceram. Soc., 90(6), 2007, 1709-16.
59. M. R. B. Romdhane, S. Baklouti, J. Bouaziz, T. Chartier, J. F. Baumard, “Dispersion of Al2O3 concentrated suspensions with new molecules able to act as binde,” J. Eur. Ceram. Soc., 24, 2004, 2723-31.
60. Z. G. Shen, J. F. Chen, H. K. Zou, J. Yun, “Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate,” J. Colloid Interf. Sci., 275, 2004, 158-64.
61. D. H. Yoon, B. I. Lee, “Effects on aqueous barium titanate tape properties of passivation of barium ion leaching by using dispersants,” J. Eur. Ceram. Soc 24(2004) 3747–3752.
62. A. Malgat, J. P. Boisvert, C. Daneault, “Specific influence of univalent cations on the ionization of alumina-coated TiO2 particles and on the adsorption of poly(acrylic acid),” J. Colloid Interf. Sci., 269, 2004, 320-28.
63. K. L. Ying, T. E. Hsieh, Sintering behaviors and dielectric properties of nanocrystalline barium titanate,” Mater. Sci. Eng. B, 138, 2007, 241-45.
64. L. Saravanan, S. Subramanian, “Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) on to alumina,” J. Colloid Interf. Sci., 284, 2005, 363-77.
65. S. Farrokhpay, G. E. Morris, D. Fornasiero, P. Self, “Influence of polymer functional group architecture on titania pigment dispersion,” Colloids Surf. A: Physicochem. Eng. Aspects, 253, 2005, 183-91.
66. H. Bouhamed, A. Magnin, S. Boufi, “Alumina interaction with AMPS-MPEG random copolymers III. Effect of PEG segment length on adsorption, electrokinetic and rheological behavior,” J. Colloid Interf. Sci., 298, 2006, 238-47.
67. L. P. Chen, H. H. Wu, K. C. Hsu, “Synthesis and application of an anionic water-soluble copolymer as a dispersant for barium titanate slurries,” J. Appl. Polym. Sci., 98, 2005, 109-15.
68. R. G. Horn, “Surface forces and their action in ceramic materials,” J. Am. Ceram. Soc., 73(5), 1990, 1117-35.
69. J. Cesarano III, I. A. Aksay, A. Bleier, “Stability of aqueous α-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte,”J. Am. Ceram. Soc., 71(4), 1988, 250-55.
70. J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83(10), 2000, 2341-59.
71. J. Yu, H. Liu, J. Chen, “Flocculation and characterization of protein by anionic copolymer containing reactive functional groups,” Colloids Surf. A: Physicochem. Eng. Aspects, 163, 2000, 225-32.
72. V. A. Hackley, “Colloidal processing of silicon nitride with poly(acrylic acid): 1. Adsorption and electrostatic interactions,” J. Am. Ceram. Soc., 80(9), 1997, 2315-25.
73. 吳杏璇,添加陰離子型分散劑之鈦酸鋇漿體在不同pH值下的分散行為,師大化學所碩士論文,2004.
74. 吳俊賢,水係氧化鋁懸浮液之酸鹼度對沈降、流變形為與電泳披覆影響之研究,文化材料所碩士論文,2001.
75. 陳龍賓,分散劑的合成以及對於鈦酸鋇漿體分散性能的評估,師大化學所碩士論文,2002.
76. B. Oonkhanond, M. E. Mullins, “Electrical double-layer effects on the deposition of zeolite A on surfaces,” J. Colloid Interf. Sci., 284, 2005, 210-15.
77. R. C. D. Cruz, J. Reinshagen, R. Oberacker, A. M. Segadaes, M. J. Hoffmann, “Electrical conductivity and stability of concentrated aqueous alumina suspensions,” J. Colloid Interf. Sci., 286, 2005, 579-88.
78. W. M. Sigmund, N. S. Bell, L. Bergstrom, “Novel powder-processing methods for advanced ceramics,” J. Am. Ceram. Soc., 83(7), 2000, 1557-74.
79. M. M. Cortalezzi, V. Colvin, M. R. Wiesner, “Controlling submicron-particle template morphology: effect of solvent chemistry,” J. Colloid Interf. Sci., 283, 2005, 366-72.
80. T. Missana, A. Adell, “On the applicability of DLVO theory to the prediction of clay colloids stability,” J. Colloid Interf. Sci., 230, 2000, 150-56.
81. Y. Ishikawa, Y. Katoh, H. Ohshima, “Colloidal stability of aqueous polymeric dispersions: Effect of pH and salt concentration,” Colloids Surf. B: Biointerf., 42, 2005, 53-58.
82. K. Yoshioka, E. Sakai, M. Daimon, A. Kitahara, “Role of steric hindrance in the performance of superplasticizers for concrete,” J. Am. Ceram. Soc., 80(10), 1997, 2667-71.
83. P. Termkhajornkit, T. Nawa, “The fluidity of fly ash-cement paste containing naphthalene sulfonate superplasticizer,” Cem. Concr. Res., 34, 2004, 1017-24.
84. S. Croll, “DLVO theory applied to TiO2 pigments and other materials in latex paints,” Prog. Org. Coat., 44, 2002, 131-46.
85. M. A. Banash, S. G. Croll, “A quantitative study of polymeric dispersant adsorption onto oxide-coated titania pigments,” Prog. Org. Coat., 35, 1999, 37-44.
86. V. Ramakrishnan, Pradip, S. G. Malghan, “The stability of alumina-zirconia suspensions,” Colloids surf A: Physicochem. Eng. Aspects, 133, 1998, 135-42.
87. D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic Press: New York, 1983.
88. C. S. Zhai, J. Wang, F. Li, R. Wu, J. C. Tao, B. D. Sun, “Influence of rheological behavior of aqueous Al2O3/nano-TiO2 slurry on the characteristics of powders prepared by spray pelletization,” Mater. Sci. Eng. A, 392, 2005, 1-7.
89. D. M. Liu, W. J. Tseng, “Rheology of injection-molded zirconia-wax mixtures,” J. Mater. Sci., 35, 2000, 1009-16.
90. C. C. Li, J. L. Lin, S. J. Huang, J. T. Lee, C. H. Chen, “A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions,” Colloids Surf. A: Physicochem. Eng. Aspects, 297, 2007, 275-81.
91. B. R. Bird, R. C. Armstrong, O. Hassager, “Dynamics of Polymeric Liquids”, John Wiley & Sons: New York, 1987.
92. G. D. Botsaris, Y. M. Glazman, Interfacial Phenomena in Coal Technology, Marcel Dekker, New York, 1989.
93. A. C. Pierre, K. Ma, “DLVO theory and clay aggregate architectures formed with AlCl3,” J. Euro. Ceram. Soc., 19, 1999, 1615-22.
94. T. Chartier, S. Souchard, J. F. Baumard, H. Vesteghem, “Degradation of dispersant during milling,” J. Euro. Ceram. Soc., 16, 1996, 1283-91.
95. U. Paik, V. A. Hackley, H. W. Lee, “Dispersant-binder interactions in aqueous silicon nitride suspensions,” J. Am. Ceram. Soc., 82(4), 1999, 833-40.
96. S. Vallar, D. Houivet, J. E. Fallah, D. Kervadec, J. M. Haussonne, “Oxide slurries stability and powders dispersion: Optimization with zeta potential and rheological measurements,” J. Euro. Ceram. Soc., 19, 1999, 1017-21.
97. W. J. Tseng, S. Y. Li, “Rheology of colloidal BaTiO3 suspension with ammonium polyacrylate as a dispersant,” Mater. Sci. Eng. A, 333, 2002, 314-19.
98. S. Lee, U. Paik, V. A. Hackley, Y. G. Jung, K. J. Yoon, “Microstructure and permittivity of sintered BaTiO3: Influence of particle surface chemistry in an aqueous medium,” Mater. Res. Bull., 39, 2004, 93-102.
99. U. Paik, V. A. Hackley, “Influence of solids concentration on the isoelectric point of aqueous barium titanate,” J. Am. Ceram. Soc., 83(10), 2000, 2381-84.
100. A. U. Khan, B. J. Briscoe, P. F. Luckham, “Interaction of binders with dispersant stabilized alumina suspensions,” Colloids surf. A: Physicochem. Eng. Aspects, 161, 2000, 243-57.
101. R. M. Silverstein, G. C. Bassler, T. C. Morrill, “Spectrometric Identification of Organic Compounds,” 5th ed., John Wiley & Sons: New York, 1991.
102. 薛敬和,高分子化學(第三版),高立圖書有限公司,1998.
103. Y. Liu, L. Gao, “Deflocculation study of aqueous nanosized Y-TZP suspensions,” Mater. Chem. Phys., 78, 2002, 480-85.
104. Y. Liu, L. Gao, J. Sun, “Effect of acrylic copolymer adsorption on the colloidal stability of a 3Y-TZP suspension,” J. Eur. Ceram. Soc., 22, 2002, 863-71.
105. T. W. G. Solomons, “Organic Chemistry,” 6th ed., John Wiley & Sons: New York, 1996.
106. C. C. Li, J. H. Jean, “Interactions of organic additives with boric oxide in aqueous barium titanate suspensions,” J.Am. Ceram. Soc., 85(6), 2002, 1441-48.
107. Z. G. Shen, J. F. Chen, H. K. Zou, J. Yun, “Rheology of colloidal nanosized BaTiO3 suspension with ammonium salt of polyacrylic acid as a dispersant,” Colloids Surf. A: Physicochem. Eng. Aspects, 244, 2004, 61-66.
108. Y. S. Ye, H. L. Huang, K. C. Hsu, “A water-soluble acrylate/sulfonate copolymer. 1. its synthesis and dispersing ability on cement,” J. Appl. Polym. Sci., 100, 2006, 2490-96.
109. W. L. McCabe, J. C. Smith, P. Harriott, “Unit Operations of Chemical Engineering,” 5th ed., McGraw-Hill, Inc., New York, 1993.
110. M. Burke, R. Greenwood, K. Kendall, “Experimental methods for measuring the optimum amount of dispersant for seven sumitomo alumina powders,” J. Mater. Sci., 33, 1998, 5149-56.
111. C. C. Li, J. H. Jean, “Interaction between dissolved Ba2+ and PAA-NH4 dispersant in aqueous barium titanate suspensions,” J. Am. Ceram. Soc., 85(6), 2002, 1449-55.
112. J. N. Israelachvili, “Intermolecular and Surface Forces,” 2th ed., Academic Press, An imprint of Elsevier, USA, 1992.
113. G. E. Morris, D. Fornasiero, J. Ralston, “Polymer depressants at the talc-water interface: adsorption isotherm, microflotation and electrokinetic studies,” Int. J. Miner. Process, 67, 2002, 211-27.
114. K. J. Laidler, J. H. Meiser, “Physical Chemistry,” 2th ed., Houghton Mifflin company, Boston, Toronto, 1995.
115. K. Yoshioka, E. Sakai, M. Daimon, A. Kitahara, “Role of steric hindrance in the performance of superplasticizers for concrete,” J. Am. Ceram. Soc., 80(10), 1997, 2667-71.
116. M. C. Blanco-Lopez, B. Rand, F. L. Riley, “The properties of aqueous phase suspensions of barium titanate,” J. Euro. Ceram. Soc., 17, 1997, 281-87.
117. M. C. B. Lopez, B. Rand, F. L. Riley, “The isoelectric point of BaTiO3,” J. Euro. Ceram. Soci., 20, 2000, 107-18.
118. L. Zhao, L. Gao, “Fabrication and surface characterization of NH4PAA-stabilized HAZ suspensions,” J. Colloid Interf. Sci., 262, 2003, 428-34.
119. B. E. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, John Wiley & Sons: New York, 1994.
120. S. K. Chatterjee, S. Gupta, K. R. Sethi, “Study of Cu(II)-methacrylic acid-methacrylamide copolymer interactions and formation of metal-copolymer complexes,” Die Angew. Makromolekulare Chemie, 147, 1987, 133-46.
121. H. Tomita, T. Goto, S. Shimada, K. Takahashi, “Solution spinning of a high-Tc oxide superconductor: 5. The influence of yttrium and barium ions on the poly(vinyl alcohol)-copper (II) complex,” Polymer, 37, 1996, 1071-77.
122. B. L. Rivas, E. D. Pereira, I. M. Villoslada, “Water-soluble polymer-metal ion interactions,” Prog. Polym. Sci., 28, 2003, 173-208.
123. C. Yang, C. Chen, “Polyanilines containing transition metal ions,” Synth. Metals, 153, 2005, 133-36.
124. K. L. Ying, T. E. Hsieh, “Dispersion of nanoscale BaTiO3 suspensions by a combination of chemical and mechanical grinding/mixing processes,” J. Appl. Polym. Sci., 106, 2007, 1550-56.
125. W. J. Tseng, S. R. Wang, “Dispersion and rheology of BaTiO3 nanoparticles in ethanol-isopropanol solvents,” J. Electroceram, 18, 2007, 197-204.
126. K. L. Ying, T. E. Hsieh, “Sintering behaviors and dielectric properties of nanocrystalline barium titanate,” Mater. Sci. Eng. B, 138, 2007, 241-45.
127. J. F. Capsal, E. Dantras, J. Dandurand, C. Lacabanne, “Electroactive influence of ferroelectric nanofillers on polyamide 11 matrix properties,” J. Non-Cryst. Solids, 353, 2007, 4437-42.
128. D. H. Yoon, B. I. Lee, “Effects of excess barium ions on aqueous barium titanate tape properties,” J. Am. Ceram. Soc., 87(6), 2004, 1066-71.
129. W. Sigmund, J. Sindel, L. M. Palmqvist, F. F. Lange, “Dispersion and consolidation of alumina using a bis-hydrophilic diblock copolymer,” J. Am. Ceram. Soc., 83(7), 2000, 1585-91.
130. A. Degen, M. Kosec, “Influence of pH and ionic impurities on the adsorption of poly(acrylic) dispersant onto a zinc oxide surface,” J. Am. Ceram. Soc., 86(12), 2003, 2001-10.
131. N. Das, H. S. Maiti, “Effect of size distribution of the starting powder on the pore size and its distribution of tape cast alumina microporous membranes,” J. Euro. Ceram. Soc., 19, 1999, 341-45.

無法下載圖示 本全文未授權公開
QR CODE