簡易檢索 / 詳目顯示

研究生: 劉家瑋
Jia-Wei Liu
論文名稱: 一維超導光子晶體濾波器之設計與研究
Design and study of filtering properties in the one-dimensional superconducting photonic crystal
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 光子晶體
英文關鍵詞: Photonic crystal
論文種類: 學術論文
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光子晶體是具有空間週期性特性的光學介質。本論文目的是在設計和研究一維超導光子晶體的濾波特性。在這篇論文中,我們有三個主題。第一個是採用轉移矩陣法研究超導薄膜上的缺陷模式在介質光子晶體異質結構 (PCH)中的影響。建議的結構在計算垂直入射和斜向入射TE和TM模式的透射光譜。內嵌式的超導薄膜扮演著優化代理光子晶體異質結構缺陷模的角色。
第二部分是在光子晶體(PC)的基礎上使用超導缺陷的雙通道可調諧濾波器的設計和分析。我們探討在相等和不相等的超導薄膜厚度的變化會如何影響濾波特性。然後,我們論證了雙通道濾波器的溫度調諧在使用超導薄膜作為缺陷層上的使用。接下來,我們顯示了對TE波以不同的角度入射的透射光譜,。
第三部分是在分析包含超導材料光子量子井(PQW)的傳輸性能。我們考慮兩種可能的PQW結構,(AB)P(CD)Q(AB)P -不對稱和(AB)P(CD)Q(BA)P -對稱,主要的光子晶體(AB)P是由介電質組成的,A=鈦酸鍶,B=氧化鋁和光子量子井(CD)Q包含D = A和超導層C = YBa2Cu3O7-x,是一個典型的高溫超導薄膜製成的。光子屏障的堆積數目,可以用來作為一個可調諧劑以獲得可調諧濾波器。

Photonic crystals are optical media with spatially periodic properties. The aim of the present project is to design and study of filtering properties in the one-dimensional superconducting photonic crystal. In this thesis, we have three topics. The first one is to study effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure (PCH) by using the transfer matrix method. The proposed structure calculated transmittance spectra in normal incidence and oblique incidence for both TE and TM modes. The embedded superconducting thin film plays the role of tuning agent for the defect mode of PCH.
The second part is to design and analysis of photonic crystal (PC) dual-channel tunable filter based on the use of superconducting defects. We investigate how the variation in the equal and unequal thickness of superconducting thin film affects the filtering properties. Then we demonstrate the temperature tuning of the dual-channel filter based on the use of superconducting thin film as defect layer. Next, we show the transmittance spectra of the TE wave at different angles of incidence.
The third part is analysis of transmission properties in a photonic quantum well (PQW) containing superconducting materials. We consider two possible PQW structures, (AB)P(CD)Q(AB)P-asymmetric and (AB)P(CD)Q(BA)P-symmetric, where the host photonic crystal (AB)P is made of dielectrics, A = SrTiO3, B = Al2O3, and the PQW (CD)Q contains D = A and superconducting layer C = YBa2Cu3O7-x, a typical high-temperature superconducting thin film. The stack number of photonic barriers can be used to play as a tunable agent in order to obtain a tunable filter.

Contents 摘要 I Abstract II Acknowledgement III Contents IV Chapter 1 Introduction 1-1 Motivation 1 1-2 The phenomenon of superconductivity 2 1-3 An introduction to BCS theory 4 1-4 Conventional two-fluid model and enhanced two-fluid model 6 Chapter 2 Transfer Matrix Method 2-1 2ⅹ2 Matrix formulation for a thin film 9 2-2 2ⅹ2 Matrix formulation for multilayer system 12 2-3 Transmittance and reflectance 14 Chapter 3 Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure 3-1 Introduction 16 3-2 Basic equations 18 3-3 Numerical results and discussion 21 IV 3-4 Conclusion 27 Chapter 4 Design and analysis of photonic crystal dual-channel tunable filter based on the use of superconducting defects 4-1 Introduction 28 4-2 Basic equations 30 4-3 Numerical results and discussion 32 4-3.1 Dependence of stack number N of center PC 32 4-3.2 Effects of equal-thickness of superconducting film 34 4-3.3 Effect of unequal-thickness of S1 and S2 36 4-3.4 Feature of temperature tuning 38 4-3.5 Angular dependence of channel frequencies 39 4-4 Conclusion 41 Chapter 5 Analysis of transmission properties in a photonic quantum well containing superconducting materials 5-1 Introduction 42 5-2 Basic equations 44 5-3 Numerical results and discussion 47 5-4 Conclusion 58 Chapter 6 Conclusions 59 References 62

References
[1] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the Flow of Light,” Princeton University Press, Princeton, NJ, 1995.
[2] Soukoulis, C. M., “Photonic crystals and light localization in the 21st century,”
Kluwer, Dordrecht, 2001.
[3] Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2010, www.ece.rutgers.edu/~orfanidi/ewa.
[4] Wu, C.-J., J.-J. Liao, and T.-W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” Journal of Electromagnetic Waves and Applications, Vol. 24, 531-542, 2010.
[5] K.H.Bennemann, J.B.Ketterson, “Superconductivity,” Springer-Verlag Berlin Heidelberg, 2008.
[6] J. G. Bednorz and K.A. , Z. Phys. B, Vol. 64, 189-193, 1986.
[7] Stephen Blundell, “SUPERCONDUCTIVITY: A VERY SHORT INTRODUCTION,” Oxford University Press Inc., New York, 2009.
[8] Chang, Y.-H., Y.-Y. Jhu, C.-J. Wu, “Temperature dependence of defect mode in a defective photonic crystal,” Optics Communications, vol. 285, pp. 1501-1504, 2012 .
[9] Liu, Y. and Z. Lu, “Phase shift defect modes in onedimensional asymmetrical photonic structures consisting of two rugate segments with different periodicities, ” Progress In Electromagnetics Research, Vol. 112, 257-272, 2011.
[10] Hung, H.-C., C.-J. Wu, S.-J. Chang, “Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal,” J. Appl. Phys., Vol. 110, no. 9, pp. 093110(1-6), 2011.
[11] Wu, C.-J., Z.-H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Progress In Electromagnetics Research , Vol. 103, pp. 169-184, 2010.
[12] P. Halevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys Rev Lett, Vol.85 , 1875–1878, 2000.
[13] X. Dai, X., Y. Xiang, S. Wen, H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys, Vol.109, pp. 053104, 2011.
[14] P. K. Choudhury, W. K. Soon, “TE mode propagation through tapered core liquid crystal optical fibers,” Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
[15] D. McPhail, M. Straub, M. Gu, “Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing,” Appl. Phys. Lett, Vol.87, 091117, 2005.
[16] Halevi, P., J. A. Reyes-Avendano, and J. A. Reyes-Cervantes, “Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal,” Physical Review E, Vol. 73, R040701, 2006.
[17] Tian, H. and J. Zi, “One-dimensional tunable photonic crystals by means of external magnetic fields,” Optics Communications, Vol. 252, 321-329, 2005.
[18] Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Magnetooptical effects in wave properties for a semiconductor photonic crystal at near infrared,” IEEE Photonics Journal, Vol. 4, 903-911, 2012.
[19] C. Sabah and S. Uckun, “Multilayer system of lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
[20] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D:Appl. Phys, Vol. 39, R151-R161, 2006.
[21] I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, Th. Rasing, “Magnetic photonic crystals,” J. Phys. D:Appl. Phys, Vol.36, R227-R287, 2003.
[22] X. Dai, Y. Xiang, and S. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.
[23] C. H. Raymond Ooi, Q. Gong, “Temperature dependent resonances in superconductor photonic crystal,” J. Appl. Phys, Vol.110 ,063513, 2011.
[24] Lin, W.-H., C.-J. Wu, T.-J. Yang, S.-J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal”, Optics Express, vol. 18, pp. 27155-27166, 2010.
[25] Wu, C.-J., C.-L. Liu, W.-K. Kuo, “Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal”, J. Electromagn. Waves and Appl., vol.23, no. 8&9, pp. 1113-1122, 2009.
[26] Berman, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D.Coalson, “Superconducting photonic crystals: Numerical calculation of the band structure,” Physical Review B, Vol. 74, 092505, 2006.
[27] Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
[28] Lyubchanskii, I. L., N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee, Th. Rasing, “A one-dimensional photonic crystal with a superconducting defect layer,” J. Optics: Pure and Appl. Optics, Vol. 36, 114014, 2009.
[29] Dadoenkova, N. N., A. E. Zabolotin, I. L. Lyubchanskii, Y. P. Lee, Th. Rasing, “One-dimensional photonic crystal with a complex defect containing an ultrathin superconducting sublayer,” Journal of Applied Physics, Vol. 108, 093117, 2010.
[30] Barvestani, J., “Analytical investigation of one-dimensional photonic crystals with a dielectric-superconducting pair defect,” Optics Communications, Vol. 284, 231-235, 2011.
[31] van Duzer, T. and C. W. Turner, Principles of Superductive Devices and Circuits, Edward Arnold, London, Chap. 3,1981.
[32] E. D. Palik, Handbook of Optical Constants of Solids, Academic, New York, 1991.
[33] Halevi, P. and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Physical Review Letter, Vol. 85, 1875-1878, 2000.
[34] Sanchez, A. S. and P. Halevi, “Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes, ” Journal of Applied Physics, Vol. 94, 797-799, 2003.
[35] Liu, C., J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Optics Communications, Vol. 283, 865-868, 2010.
[36] Chang, T.-W., J.-J. Wu, C.-J. Wu, “Complex photonic band structures in a photonic crystal containing lossy semiconductor InSb, ”Progress In Electromagnetics Research, Vol. 131, 153-167, 2012.
[37] King, T.-C., Y.-P. Yang, Y.-S. Liou, and C.-J. Wu, “Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect, ”Solid State Communications, Vol. 152, 2189-2192, 2012.
[38] Lin, W.-H, C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal”, Optics Express, Vol. 18, 27155-27166, 2010.
[39] Wu, C.-J., C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” Journal of Optical Society of America B: Optical Physics, Vol. 26, 2089-2094, 2009.
[40] Raymond Ooi, C. H., T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Physical Review B, Vol. 61, 5920-5926, 2000.
[41] Poddubny, A. N., E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystals,” Solid State Communications, Vol. 146, 143-147, 2008.
[42] Becerra, G., E. Moncada-Villa, and J. C. Granada, “Localized modes in metamaterial-dielectric photonic crystals with a dielectric-superconductor pair defect,” Journal of Superconductivity and Novel Magnetism, Vol. 25, 2163-2166, 2012.
[43] Hu, C.-A., C.-J. Wu, T.-J. Yang, and S.-L. Yang “Analysis of effective plasma frequency in a superconducting photonic crystal,” Journal of Optical Society of America B: Optical Physics, Vol. 30, 366-369, 2013.
[44] Hu, C.-A., J.-W. Liu, C.-J. Wu, T.-J. Yang, S.-L. Yang, “Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure,” Solid State Communications, Vol. 157, 54-57, 2013.
[45] Meisels, R., O. Glushko, and F. Kuchar, “Tuning the flow of light in semiconductor-based photonic crystals by magnetic fields”, Photonics and Nanostructures: Fundamental and Applications, Vol. 10, 60-68, 2012.
[46] Liu, Z. and G. Jin, “Extraordinary THz transmission through subwavelength semiconductor slits under antiparallel external magnetic fields,” Applied Physics A, Vol. 105, 819-825, 2011.
[47] Takeda, H. K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Physical Review B ,Vol. 70, 085109, 2004.
[48] Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, “Giant gaps in photonic band structures,” Physical Review B, Vol. 57, R9388–9391, 1998.
[49] Pendry, J., “Calculating photonic band structure, ” Journal of Physics, Vol. 8, 1085–1108, 1995.
[50] Qiao, F., C. Zhang, and J. Wan, “Photonic quantum-well structures: Multiple channeled filtering phenomena, ” Applied Physics Letters, Vol. 77, 3698–3701, 2000.
[51] Lindner, N. H., G. Refael, and V. Galitski, “Floquet topological insulator in semiconductor quantum wells,” Nature Physics, Vol. 7, 490–495, 2011.
[52] Politano, A. and G. Chiarello, “Collective electronic excitations in systems exhibiting quantum well states,” Surface Review and Letters, Vol. 16, 171–190, 2009.
[53] Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, “Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water,” Surface Science, Vol. 601, 2656–2659, 2007.
[54] Jiang, Y., C. Niu, and D. L. Lin, “Resonance tunneling through photonic quantum wells,” Physical Review B, Vol. 59, 9981–9986, 1999.
[55] Yano, S., Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, and S. Yamaguchi, “Quantized state in a single quantum well structure of photonic crystals,” Physical Review B, Vol. 63, 153316, 2001.
[56] Chen, X., W. Lu, and S. C. Shen, “Photonic resonant transmission in the quantum-well structure of photonic crystals,” Solid State Communications, Vol. 127, 541–544, 2003.
[57] Liu, J., J. Sun, C. Huang, W. Hu, and D. Hunag, “Optimizing the spectral efficiency of photonic quantum well structure,” Optik, Vol. 120, 35–39, 2009.
[58] Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Tunable multichannel filter in a photonic crystal containing semiconductor photonic quantum well,” IEEE Photonics Journal, Vol. 4, No. 1, 293–290, 2012.
[59] Chang, Y.-H., Y.-Y. Jhu, and C.-J. Wu, “Temperature and bias dependences of defect mode in a photonic crystal containing a photonic-quantum-well defect,” J. Optoelectron. Adv. Materials, Vol. 14, 185–192, 2012.
[60] Xu, C., X. Xu, D. Han, X. Liu, C. P. Liu, and C. J. Wu, “Photonic quantum-well structures containing negative-index materials,” Optics Communications, Vol. 280, 221–224, 2007.
[61] Dai, X., Y. Xiang, and S. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Progress In Electromagnetics Research, Vol. 120, 17–34, 2011.
[62] Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang,“Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal,” Progress In Electromagnetics Research, Vol. 125, 219–235, 2012.
[63] Hsu, H.-T., M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu,“A multichanneled filter in a photonic crystal containing coupled defects,” Progress In Electromagnetics Research, Vol. 117, 379– 392, 2011.
[64] Zhang, H. F., S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao,“Properties of omnidirectional photonic band gaps in fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Progress In Electromagnetics Research B, Vol. 40, 415–431, 2012.
[65] Suthar, B., V. Kumar, A. Kumar, K. S. Singh, and A. Bhargava,“Thermal expansion of photonic band gap for one dimensional photonic crystal,” Progress In Electromagnetics Research Letters, Vol. 32, 81–90, 2012.
[66] Suthar, B. and A. Bhargava, “Tunable multi-channel filtering using 1-D photonic quantum well structures,” Progress In Electromagnetics Research Letters, Vol. 27, 43–51, 2011.
[67] Gharaati, A. and A. Serajfard, “Analytical calculation of band gap of a 1D planar ternary photonic crystal by simulating with a symmetric lossless transmission line,” Progress In Electromagnetics Research Letters, Vol. 28, 101–109, 2012.
[68] Gharaati, A. and H. Azarshab, “Characterization of defect modes in one dimensional ternary metallo-dielectric nanolayered photonic crystal,” Progress In Electromagnetics Research B, Vol. 37, 125–141, 2012.
[69] Simserides, C. D. and G. P. Triberis, “A systematic study of electronic states in n-AlxGa1−xAs/GaAs/n-AlxGa1−x as selectively doped double-heterojunction structures,” Journal of Physics: Condensed Matters, Vol. 5, 6437–6446, 1993.

無法下載圖示 本全文未授權公開
QR CODE