簡易檢索 / 詳目顯示

研究生: 溫洧正
Wen, Wei-Cheng
論文名稱: 氧化還原置換合成三元金屬奈米材料與光催化的應用
Galvanic replacement for the synthesis of ternary nanomaterials and plasmon enhanced photocatalysis
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 金奈米雙三角錐金奈米棒金-銀雙金屬結構賈法尼置換反應產氫反應二氧化碳還原反應
英文關鍵詞: gold nanobipyramids, gold nanorods, Au/Ag binary metal structure, Gavlvanic Replacement reaction, hydrogen evolution reaction, CO2 reduction reaction
DOI URL: http://doi.org/10.6345/NTNU201900340
論文種類: 學術論文
相關次數: 點閱:290下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以金奈米雙三角錐(Gold Nanobipyramids, AuNBPs)與金奈米棒(Gold Nanorod, AuNRs)兩種材料在Hexadecyltrimethylammonium chloride(CTAC)環境中將銀離子還原在表面,以至表面生長銀後形成棒狀及塊狀的金/銀-核/殼的結構,接著以銀做為媒介,利用氧化還原電位的差異,將金、鈀、鉑進行對銀的賈法尼置換(Galvanic replacement reaction),並研究各材料與各金屬之間置換後在構型上的差異及光譜上的變化。由於實驗所使用的三價金與四價鉑皆為高價數金屬,導致大量的銀被置換後只能換上少量的金及鉑,進而使其外部構型不甚堅固,因此實驗中我們利用Sodium oleate(NaOL) 先將三價的金先行還原成一價的金,再與二價的鉑一同進行不同價數的相同金屬對同一材料進行置換,讓等量的銀可以置換上較多的金及鉑,使其結構達到更加穩固之目的。最後嘗試將此種材料應用在光電催化實驗上,如產氫反應及二氧化碳還原反應。

    We reduce the silver ion on Gold nanobipyramids (AuNBPs) and Gold nanorods (AuNRs) these two nanomaterials in Hexadecyltrimethylammonium chloride (CTAC). Ag overgrowth on the AuNBPs/AuNRs and spherical Au nanoparticles form Au/Ag heteronanorods/nanocuboids and (Au core)@(Ag shell), respectively. Because of the different oxidation-reduction potential, we can change the silver atom into silver ion and reduce the other metal (like: gold, palladium and platinum) on the gold nanobipyramids and gold nanorods. Then we can research the different structure in these materials. Because some of the metal we used have high valence number, a large amount of silver can be replaced with a little amount of gold or platinum after being replaced and the structure isn’t stable enough. To solve the problem, we use Sodium oleate (NaOL) to reduce Au(III) into Au(I). Then we use the Au(I) and Pt(II) to replace the silver. So that the same amount of silver can replace more gold and platinum. To make its structure more stable. Then we try to use these nanomaterials on photocatalytic application,.like hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR).

    謝誌 I 摘要 II Abstract III 目錄 IV 圖表目錄 VII 第一章 緒論 1 1-1奈米技術的啟源 1 1-2奈米材料的製作 2 1-3奈米材料的性質 4 1-4奈米材料的應用 6 1-5 奈米金屬與表面電漿共振效應 8 第二章 文獻回顧與動機 10 2-1 金奈米雙三角錐與金奈米棒的差異 10 2-2 金奈米粒子之表面再生長銀 11 2-3 以不同金屬進行對銀的置換 13 2-4 奈米材料之催化應用 14 2-5 研究動機 16 第三章 實驗藥品及設備 17 3-1 實驗藥品 17 3-2 實驗設備 19 3-2-1 高速冷凍型離心機(Universal Centrifuges) 19 3-2-2 低溫循環水槽(Water Bath) 20 3-2-3 溫控電磁攪拌器 21 3-2-4 微量高速離心機 22 3-3分析儀器設備介紹 23 3-3-1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 23 3-3-2 紫外光-可見光-近紅外光分光光譜儀(UV-Visble-Near IR Spectrophotometer) 24 3-3-3 球面差修正掃描穿透式電子顯微鏡(Spherical Aberration Corrected Scanning Transmission Electron Microscope, STEM) 25 3-3-4 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR)檢測裝置 26 3-3-5 恆定電位/電流分析儀(Potentiostat/Galvanostat) 27 第四章 實驗步驟 28 4-1 金奈米雙三角錐之合成 28 4-2 金奈米雙三角錐之純化 29 4-3 金奈米棒之合成 30 4-4 金奈米雙三角錐/金奈米棒之表面生長銀 31 4-5 金奈米雙三角錐/金奈米棒之表面銀的蝕刻 32 4-6 將四氯金酸中的金(III)還原為金(I) 33 4-7 奈米材料之碳紙電極製備 34 第五章 結果與討論 35 5-1 材料鑑定與光譜分析 35 5-1-1 金奈米雙三角錐及金奈米棒的形狀與光譜 35 5-1-2 金/銀-核/殼結構的形狀與光譜 38 5-1-3 金奈米雙三角錐/銀-核/殼以各金屬置換後之形狀與光譜 41 5-1-4 金奈米棒/銀-核/殼以各金屬置換後之形狀與光譜 46 5-1-4 置換後表面金屬元素分析 51 5-1-5不同價數的金對置換的影響 52 5-1-6不同價數的鉑對置換的影響 55 5-2產氫反應(Hydrogen Evolution Reaction, HER)之應用 58 5-3 二氧化碳還原反應(CO2 Reduction Reaction, CO2RR)之應用 59 第六章 結論與未來展望 61 第七章 參考文獻 62

    1. 牟中原、陳家俊, <奈米材料研究發展.pdf>. 2000, 281-288.
    2. 國立科學工藝博物館 奈米材料製作 <https://nano.nstm.gov.tw/NanoConcept/Inspection/MaterialProduction.htm>.
    3. Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y., Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer. ACS Biomaterials Science & Engineering 2017, 3 (4), 608-618.
    4. Wi, J. S.; Park, J.; Kang, H.; Jung, D.; Lee, S. W.; Lee, T. G., Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging. ACS Nano 2017, 11 (6), 6225-6232.
    5. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-297.
    6. Rao, W.; Li, Q.; Wang, Y.; Li, T.; Wu, L., Comparison of Photoluminescence Quantum Yield of Single Gold Nanobipyramids and Gold Nanorods. ACS Nano 2015, 9 (3), 2783-2791.
    7. Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.-H.; Wang, J., Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Advanced Optical Materials 2015, 3 (6), 801-812.
    8. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J., Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24 (10), 5233-5237.
    9. Chen, H.; Shao, L.; Woo, K. C.; Ming, T.; Lin, H.-Q.; Wang, J., Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength. The Journal of Physical Chemistry C 2009, 113 (41), 17691-17697.
    10. Lee, S.; Mayer, K. M.; Hafner, J. H., Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 2009, 81 (11), 4450-4455.
    11. Kou, X.; Ni, W.; Tsung, C. K.; Chan, K.; Lin, H. Q.; Stucky, G. D.; Wang, J., Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 2007, 3 (12), 2103-2113.
    12. Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J., Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv Mater 2012, 24 (35), OP200-OP207.
    13. Zhuo, X.; Zhu, X.; Li, Q.; Yang, Z.; Wang, J., Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano 2015, 9 (7), 7523-7535.
    14. González, E.; Arbiol, J.; Puntes, V. F., Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 2011, 334 (6061), 1377-1380.
    15. Zhang, W.; Rahmani, M.; Niu, W.; Ravaine, S.; Hong, M.; Lu, X., Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced Raman scattering. Sci Rep 2015, 5, 8382.
    16. Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J., Ultrathin Pd-Au Shells with Controllable Alloying Degree on Pd Nanocubes toward Carbon Dioxide Reduction. J Am Chem Soc 2019, 141 (12), 4791-4794.
    17. Zhu, X.; Yip, H. K.; Zhuo, X.; Jiang, R.; Chen, J.; Zhu, X. M.; Yang, Z.; Wang, J., Realization of Red Plasmon Shifts up to approximately 900 nm by AgPd-Tipping Elongated Au Nanocrystals. J Am Chem Soc 2017, 139 (39), 13837-13846.
    18. Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S.; Mavrikakis, M.; Xia, Y., Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Lett 2016, 16 (10), 6644-6649.
    19. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
    20. Cui, E.; Lu, G., Modulating Photogenerated Electron Transfer and Hydrogen Production Rate by Controlling Surface Potential Energy on a Selectively Exposed Pt Facet on Pt/TiO2 for Enhancing Hydrogen Production. The Journal of Physical Chemistry C 2013, 117 (50), 26415-26425.
    21. Gao, D.; Zhou, H.; Cai, F.; Wang, J.; Wang, G.; Bao, X., Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction. ACS Catalysis 2018, 8 (2), 1510-1519.
    22. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta 1994, 39 (11-12), 1833-1839.
    23. 張育唐、陳藹然 比爾定律與吸收度<http://highscope.ch.ntu.edu.tw/wordpress/?p=40839>.
    24. Guo, Z.; Wan, Y.; Wang, M.; Xu, L.; Lu, X.; Yang, G.; Fang, K.; Gu, N., High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 414, 492-497.
    25. Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y., Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat Commun 2015, 6, 7571.
    26. Ni, W.; Kou, X.; Yang, Z.; Wang, J., Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2 (4), 677-686.
    27. Song, J. H.; Kim, F.; Kim, D.; Yang, P., Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chemistry 2005, 11 (3), 910-916.
    28. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 2013, 13 (2), 765-771.

    下載圖示
    QR CODE