研究生: |
溫洧正 Wen, Wei-Cheng |
---|---|
論文名稱: |
氧化還原置換合成三元金屬奈米材料與光催化的應用 Galvanic replacement for the synthesis of ternary nanomaterials and plasmon enhanced photocatalysis |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 金奈米雙三角錐 、金奈米棒 、金-銀雙金屬結構 、賈法尼置換反應 、產氫反應 、二氧化碳還原反應 |
英文關鍵詞: | gold nanobipyramids, gold nanorods, Au/Ag binary metal structure, Gavlvanic Replacement reaction, hydrogen evolution reaction, CO2 reduction reaction |
DOI URL: | http://doi.org/10.6345/NTNU201900340 |
論文種類: | 學術論文 |
相關次數: | 點閱:290 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以金奈米雙三角錐(Gold Nanobipyramids, AuNBPs)與金奈米棒(Gold Nanorod, AuNRs)兩種材料在Hexadecyltrimethylammonium chloride(CTAC)環境中將銀離子還原在表面,以至表面生長銀後形成棒狀及塊狀的金/銀-核/殼的結構,接著以銀做為媒介,利用氧化還原電位的差異,將金、鈀、鉑進行對銀的賈法尼置換(Galvanic replacement reaction),並研究各材料與各金屬之間置換後在構型上的差異及光譜上的變化。由於實驗所使用的三價金與四價鉑皆為高價數金屬,導致大量的銀被置換後只能換上少量的金及鉑,進而使其外部構型不甚堅固,因此實驗中我們利用Sodium oleate(NaOL) 先將三價的金先行還原成一價的金,再與二價的鉑一同進行不同價數的相同金屬對同一材料進行置換,讓等量的銀可以置換上較多的金及鉑,使其結構達到更加穩固之目的。最後嘗試將此種材料應用在光電催化實驗上,如產氫反應及二氧化碳還原反應。
We reduce the silver ion on Gold nanobipyramids (AuNBPs) and Gold nanorods (AuNRs) these two nanomaterials in Hexadecyltrimethylammonium chloride (CTAC). Ag overgrowth on the AuNBPs/AuNRs and spherical Au nanoparticles form Au/Ag heteronanorods/nanocuboids and (Au core)@(Ag shell), respectively. Because of the different oxidation-reduction potential, we can change the silver atom into silver ion and reduce the other metal (like: gold, palladium and platinum) on the gold nanobipyramids and gold nanorods. Then we can research the different structure in these materials. Because some of the metal we used have high valence number, a large amount of silver can be replaced with a little amount of gold or platinum after being replaced and the structure isn’t stable enough. To solve the problem, we use Sodium oleate (NaOL) to reduce Au(III) into Au(I). Then we use the Au(I) and Pt(II) to replace the silver. So that the same amount of silver can replace more gold and platinum. To make its structure more stable. Then we try to use these nanomaterials on photocatalytic application,.like hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR).
1. 牟中原、陳家俊, <奈米材料研究發展.pdf>. 2000, 281-288.
2. 國立科學工藝博物館 奈米材料製作 <https://nano.nstm.gov.tw/NanoConcept/Inspection/MaterialProduction.htm>.
3. Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y., Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer. ACS Biomaterials Science & Engineering 2017, 3 (4), 608-618.
4. Wi, J. S.; Park, J.; Kang, H.; Jung, D.; Lee, S. W.; Lee, T. G., Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging. ACS Nano 2017, 11 (6), 6225-6232.
5. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-297.
6. Rao, W.; Li, Q.; Wang, Y.; Li, T.; Wu, L., Comparison of Photoluminescence Quantum Yield of Single Gold Nanobipyramids and Gold Nanorods. ACS Nano 2015, 9 (3), 2783-2791.
7. Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.-H.; Wang, J., Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Advanced Optical Materials 2015, 3 (6), 801-812.
8. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J., Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24 (10), 5233-5237.
9. Chen, H.; Shao, L.; Woo, K. C.; Ming, T.; Lin, H.-Q.; Wang, J., Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength. The Journal of Physical Chemistry C 2009, 113 (41), 17691-17697.
10. Lee, S.; Mayer, K. M.; Hafner, J. H., Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 2009, 81 (11), 4450-4455.
11. Kou, X.; Ni, W.; Tsung, C. K.; Chan, K.; Lin, H. Q.; Stucky, G. D.; Wang, J., Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 2007, 3 (12), 2103-2113.
12. Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J., Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv Mater 2012, 24 (35), OP200-OP207.
13. Zhuo, X.; Zhu, X.; Li, Q.; Yang, Z.; Wang, J., Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano 2015, 9 (7), 7523-7535.
14. González, E.; Arbiol, J.; Puntes, V. F., Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 2011, 334 (6061), 1377-1380.
15. Zhang, W.; Rahmani, M.; Niu, W.; Ravaine, S.; Hong, M.; Lu, X., Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced Raman scattering. Sci Rep 2015, 5, 8382.
16. Yuan, X.; Zhang, L.; Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z. J.; Gong, J., Ultrathin Pd-Au Shells with Controllable Alloying Degree on Pd Nanocubes toward Carbon Dioxide Reduction. J Am Chem Soc 2019, 141 (12), 4791-4794.
17. Zhu, X.; Yip, H. K.; Zhuo, X.; Jiang, R.; Chen, J.; Zhu, X. M.; Yang, Z.; Wang, J., Realization of Red Plasmon Shifts up to approximately 900 nm by AgPd-Tipping Elongated Au Nanocrystals. J Am Chem Soc 2017, 139 (39), 13837-13846.
18. Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S.; Mavrikakis, M.; Xia, Y., Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Lett 2016, 16 (10), 6644-6649.
19. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
20. Cui, E.; Lu, G., Modulating Photogenerated Electron Transfer and Hydrogen Production Rate by Controlling Surface Potential Energy on a Selectively Exposed Pt Facet on Pt/TiO2 for Enhancing Hydrogen Production. The Journal of Physical Chemistry C 2013, 117 (50), 26415-26425.
21. Gao, D.; Zhou, H.; Cai, F.; Wang, J.; Wang, G.; Bao, X., Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction. ACS Catalysis 2018, 8 (2), 1510-1519.
22. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta 1994, 39 (11-12), 1833-1839.
23. 張育唐、陳藹然 比爾定律與吸收度<http://highscope.ch.ntu.edu.tw/wordpress/?p=40839>.
24. Guo, Z.; Wan, Y.; Wang, M.; Xu, L.; Lu, X.; Yang, G.; Fang, K.; Gu, N., High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 414, 492-497.
25. Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y., Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat Commun 2015, 6, 7571.
26. Ni, W.; Kou, X.; Yang, Z.; Wang, J., Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2 (4), 677-686.
27. Song, J. H.; Kim, F.; Kim, D.; Yang, P., Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chemistry 2005, 11 (3), 910-916.
28. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 2013, 13 (2), 765-771.