研究生: |
陳嬴宇 Chen, Ying-Yu |
---|---|
論文名稱: |
大腦由上至下感官預測力與學步兒語言發展之fNIRS研究 Top-down Sensory Prediction in Toddler’s Brain and Language Development: A fNIRS Study |
指導教授: |
王馨敏
Wang, Shin-Min |
學位類別: |
碩士 Master |
系所名稱: |
人類發展與家庭學系 Department of Human Development and Family Studies |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 由上而下感官預測力 、語言發展 、學步兒 、功能性近紅外光譜儀 |
英文關鍵詞: | top-down prediction, language development, toddlers, fNIRS |
DOI URL: | http://doi.org/10.6345/NTNU202100390 |
論文種類: | 學術論文 |
相關次數: | 點閱:418 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Emberson 等人2015年發現正常發展的嬰兒其大腦中進行由上而下跨感官訊息預測的能力在6月齡就已到位,該實驗讓6月齡嬰兒先進行聽覺與視覺刺激材料的配對學習,一段時間後,不預期省略原本應該與聽覺刺激一起出現的視覺圖片(視覺缺漏階段),結果發現6月齡嬰兒在進行視覺缺漏階段時,大腦視覺區仍出現活化現象,因此推論6月齡嬰兒能夠在短時間內習得感官間的配對關係,並且據此對未來訊息進行預測。而最近以臺灣嬰兒為研究對象,採用類似作業典範,進一步發現此彰顯在神經層次的由上而下感官預測力能夠有效預測嬰兒在12個月大時的手勢溝通和詞彙表達能力(Wang et al., 2020)。
有鑑於先前研究對象為年齡較小的受試族群,僅能測量到詞彙層面的能力,無法觀察到大腦的神經預測能力是否也與句子層次的處理能力有關聯。基於此,本研究採用相同的實驗典範以功能性近紅外光譜收集大腦活動資料,但以語言使用更為複雜的16至20月齡學步兒作為研究對象,探究由上而下感官預測與語言發展之關係,尤其是句子層次的發展,是否具有同時相關性。
研究結果發現,16至20月齡學步兒在視覺缺漏的實驗階段,與過去6月齡及12月齡嬰兒有著相同實驗結果,且大腦在視覺缺漏階段於枕葉的血氧濃度活化程度與利用華語嬰幼兒溝通發展量表(幼兒版)所測量到的詞彙表達能力以及句子使用能力(如何使用語言、語言表達複雜度)均達顯著正相關,這個發現為學步兒語言發展與大腦神經由上而下的預測力之關聯性提供了更進一步的支持證據。
Emberson et al.’s (2015) showed that the neural response related to cross-modal top-down sensory predictions is already in place in typically developing 6-month-olds. In their experiment, 6-month-old infants were presented with a visual stimulus soon after they heard a sound such that a sound predicted the presentation of a visual stimulus. After learning this cross-modal association, infants were then presented with trials in which the sound was presented but the predicted visual stimulus was unexpectedly omitted (visual omission trials). Results showed that a robust occipital response was present on visual-omission trials, suggesting that 6-month-old infants can learn the paired relationship in a short time and predict upcoming information. Recently, Wang et al. (2020) adapted the similar experimental procedure and found that the neural response related to cross-modal top-down sensory predictions measured at 6 months was a reliable longitudinal predictor of children’s gesture productions and expressive vocabulary at 12 months.
Based on the findings of Wang et al., the present study took a step further to see whether this link can be also identified in older children with more complex language skills. To achieve this aim, a group of toddlers aged between 16 to 20 months were recruited. Functional near-infrared spectroscopy (fNIRS) was used to measure the neural response related to cross-modal top-down predictions using the same fNIRS task as used in the study of Wang et al.. The results revealed positive links between fNIRS predictive signals and toddler’s vocabulary production and syntactic complexity (how to use language, grammatical complexity) measured by the Toddler form of Mandarin-Chinese Communicative Development Inventory. These findings provide additional supports for the hypothesis that the top-down prediction ability manifested at the neural level plays a role in young children’s language development.
中文部分
王馨敏、吳淑娟、李俊仁、曾志朗、李如蕙(2020)。從認知科學觀點進行醫療體系推動非都會區幼兒早期親子共讀介入成效的長期追蹤評估研究。未出版手稿。
林生傳(2005)。教育社會學。台北市:巨流。
劉惠美、曹峰銘(2010)。華語嬰幼兒溝通發展量表之編製與應用。中華心理衛生學刊,23(4),503-534。
劉惠美、陳昱君 (2015)。華語嬰幼兒表達性詞彙的語意內容及詞類組成之發展。教育心理學報,47(2),217-242。
英文部分
Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of cognitive neuroscience, 15, 600-609.
Bridges, K., & Hoff, E. (2014). Older Sibling Influences on the Language Environment and Language Development of Toddlers in Bilingual Homes. Applied psycholinguistics, 35(2), 225–241.
Borgstrom, K.,Torkildsen, J K., & Lindgren, M. (2015). Event-related potentials during word mapping to object shape predict toddlers’ vocabulary size. Front.
Psychol. 6:143.
Boldin, A. M., Geiger, R., & Emberson, L. L. (2018). The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants. Developmental Psychobiology, 60(5), 544-556.
Calvert, G. A. (2001). Crossmodal processing in the human brain: Insights from functional neuroimagingstudies. Cerebral Cortex, 11(12), 1110-1123.
Catts, H. W., Fey, M. E., Tomblin, J. B., & Zhang, X. (2002). A longitudinal investigation of reading outcomes in children with language impairments. J Speech Lang Hear Res, 45(6), 1142-1157.
Di Lorenzo, R., Pirazzoli, L., Blasi, A., Bulgarelli, C., Hakuno, Y., Minagawa, Y., & Brigadoi, S. (2019). Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems. Neuroimage, 200, 511-527.
Emberson, L. L., Richards, J. E., & Aslin, R. N. (2015). Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months. Proceedings of the National Academy of Sciences, 112(31), 9585.
Emberson, L. L., Boldin, A. M., Riccio, J. E., Guillet, R., & Aslin, R. N. (2017). Deficits in top-down sensory prediction in infants at risk due to premature birth. Curr Biol, 27(3), 431-436.
Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921-935.
Gopnik, A., & Meltzoff, A. (1987). The development of categorization in the second year and its relation to other cognitive and linguistic developments. Child Development, 58(6), 1523-1531.
Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: Rate, content, and the vocabulary spurt. Journal of Child Language, 17(1), 171-183.
Ganger, J., & Brent, M. R. (2004). Reexamining the vocabulary spurt. Dev Psychol, 40(4), 621-632.
Gilbert, C., & Li, W. (2013). Top-down influences on visual processing. Nature reviews. Neuroscience, 14, 350-363.
Hoff-Ginsberg, E. (1998). The relation of birth order and socioeconomic status to children's language experience and language development. Applied Psycholinguistics, 19(4), 603-629.
Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review, 111(3), 662-720.
Hulme, C., Goetz, K., Gooch, D., Adams, J., & Snowling, M. J. (2007). Paired-associate learning, phoneme awareness, and learning to read. J Exp Child Psychol, 96(2), 150-166.
Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational aasis and neural organization. Neuron, 69(3), 407-422.
Hickok, G. (2012). The cortical organization of speech processing: Feedback control and predictive coding the context of a dual-stream modal. Journal of communication Disorders, 45(6), 393-402.
Kouider, S., Long, B., Le Stanc, L., Charron, S., Fievet, A-C., Barbosa, L S., & Gelskov, S V. (2015). Neural dynamics of prediction and surprise in infants. Nature Communications, 6, 9537.
Lifter, K., & Bloom, L. (1989). Object knowledge and the emergence of language. Infant Behavior and Development, 12(4), 395-423.
Lieberman, A. F.,(1993)The emotional life of the toddler(pp.1). NY: The Free Press.
Mervis, C. B., & Bertrand, J. (1994). Acquisition of the novel name–nameless category (N3C) principle. Child Development, 65(6), 1646-1662.
Medathati, N. V. K., Neumann, H., Masson, G., & Kornprobst, P. (2016). Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision. Computer Vision and Image Understanding, 150.
Oshima-Takane, Y., Goodz, E., & Derevensky, J. (1996). Birth order effects on early language development: Do secondborn children learn from overheard speech? Child Development, 67(2), 621-634.
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.
Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35(2), 146-160.
Steinberg, L. (2005). Age of opportunity: Lessons from the new science of adolescence. Eamon Dolan/Mariner Books.
Smith, L. B., Suanda, S. H., & Chen, Y. (2014). The unrealized promise of infant statistical word–referent learning. Trends in Cognitive Sciences, 18(5), 251-258.
Vassar, R., Schadl, K., Cahill-Rowley, K., Yeom, K., Stevenson, D., & Rose, J. (2020). Neonatal brain microstructure and machine-learning-based predicition of early language development in children born very preterm. Pediatr. Neurol, 108, 86-92.
Watanabe, H., Nakano, T., Homae, F., & Taga, G. (2008). Prefrotal cortical involvement in young infants’ analysis of novelty. Cerebral Cortex, 19(2), 455-463.
Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754-20759.
Wang, S., & Allen, R. J. (2018). Cross-modal working memory binding and word recognition skills: How specific is the link? Memory, 26(4), 514-523.
Wang, S., Allen, R. J., Fang, S.-Y., & Li, P. (2017). Cross-modal working memory binding and L1-L2 word learning. Memory & Cognition, 45(8), 1371-1383.
Wang, S., Allen, R. J., Lee, J. R., & Hsieh, C.-E. (2015). Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children. J Exp Child Psychol, 133, 16-28.
Wang, S. et al. (2020a). Top-down sensory prediction in infants’ brain and preverbal communicative competence development: A longitudinal study from 6 to 12 months. Unpublished manuscript.
Wang, S. et al. (2020b). Top-down sensory prediction in infants’ brain and home reading environment both uniquely contribute to spoken vocabulary development in 12-month-old infants. Unpublished manuscript.
Zerbeto, A. B., Cortelo, F. M., & C Filho, É. B. (2015). Association between gestational age and birth weight on the language development of Brazilian children: A systematic review. Jornal de pediatria, 91(4), 326–332.