Basic Search / Detailed Display

Author: 邵柏潤
BORUN,SHAO
Thesis Title: 以肢體動作分析為基礎之新生兒意外監控系統
An Infant Monitoring System Based on Behavior Analysis
Advisor: 方瓊瑤
Fang, Chiung-Yao
Degree: 碩士
Master
Department: 資訊工程學系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2009
Academic Year: 97
Language: 中文
Number of pages: 67
Keywords (in Chinese): 新生兒嬰兒意外系統
Keywords (in English): INFANT, BABY
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 180Downloads: 7
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 科技日益更新,近年來基於人身的安全需求,自動化即時監控系統的相關研究正在快速的成長,一套監視系統可以幫助我們監控戶外與室內的環境狀況,甚至於面對現在少子化社會的到來,新生兒居家安全的監控與追蹤更顯得重要。
    新生兒常被認為是脆弱、無助且無法明確表逹自己的需求,因此比一般病人或老年人更需要仔細且長時間的照顧與看護,也較常因照顧者的微小疏忽而導致生病或意外事故,造成新生兒父母親或照顧者很大的壓力與負擔。
    本研究主要應用在分析新生兒的動作,在視覺式監控系統的監控下避免新生兒發生意外。監控攝影機架設於嬰兒床的正上方,系統讀入連續時間的新生兒動作影像,偵測新生兒肢體部位並與前一個時間的偵測結果追蹤比對,並利用新生兒肢體動作示意圖(posture map)來表示追蹤比對的結果。
    新生兒的動作關係圖是由連續的肢體動作示意圖所構成,可儲存於資料庫內。當異常的情況發生時,例如新生兒的肢體動作示意圖不存在動作關係圖內或是符合動作關係圖內危險的節點時,系統將會發出警告通知照顧者前來關心。

    This paper presents a vision-based infant-monitoring system based on infant behavior analysis approach to avoid the occurrence of the infant’s accidents. In this study the video camera is set above the crib to capture the video sequence of the infants. The system first preprocesses the input sequence to remove the noises and reduce the influence of lights and shadows. Second, the infant-monitoring system detects the infant’s limbs and matching them to the pre-defined posture maps. These posture maps can be regard as a node and be linked to construct a motion graph. The motion graph describes the current infant’s motion. All the motion graphs can be merged into a behavior graph to describe the infant’s behaviors ever occurring before.
    If some unusual situations happen, for example, an input limb map does not exist in the behavior graph or be matched to a danger node then the system then alerts the baby-sitter to take care of the infant immediately. Since the infants grow very fast and their growing processes are various, the behavior graph should be updated to fit the current behaviors of infants. The experimental results show that the method has the ability to work robustly in real-time.

    圖目錄...........................................0-5 第一章 緒論......................................1-1 1.1研究背景與目的............................1-1 1.2文獻探討..................................1-2 1.3 論文架構.................................1-4 第二章 新生兒意外監控系統........................2-1 2.1系統目的..................................2-1 2.2系統流程..................................2-2 2.2.1影像前處理..........................2-6 第三章 新生兒的肢體動作示意圖....................3-1 3.1肢體動作示意圖............................3-1 3.2新生兒肢體動作示意圖比對..................3-5 3.2.1新生兒肢體部位特徵擷取..............3-5 3.2.2肢體部位對應........................3-9 第四章 新生兒動作分析............................4-1 4.1分析系統流程..............................4-1 4.2動作關係圖的建構與分析....................4-3 第五章 實驗結果..................................5-1 第六章 結論與未來工作............................6-1 6.1 結論.....................................6-1 6.2未來工作..................................6-2 參考文獻.........................................A-1 附錄.............................................A-5

    [Bha03] J. Bhatt, N. Lobo, M. Shah, and G. Bebis, “Automatic Recognition of a Baby Gesture,” Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence, California, USA, pp.1 – 6, 2003.

    [Bob01] A. Bobick and J. Davis, “The Recognition of Human Movement Using Temporal Templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, pp.257 – 267, 2001.

    [Bra00] G. Bradski and J. Davis, “Motion segmentation and pose recognition with motion history gradients,” Proceedings of 15th IEEE Workshop on Applications of Computer Vision, USA, pp. 238 – 244, 2000

    [Che08] Q. Chen, N.Georganas, and D. Petriu, “Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-Free Grammar,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, pp.1562 – 1571, 2008.

    [che01] S. W. Chen, S. C. Lin, and K. E. Chang, “Attributed concept maps: fuzzy integration and fuzzy matching,” IEEE Transaction on Systems, Man, and Cybernetics, Part B, Vol. 31, no. 5, pp.842 – 852, 2001.

    [Dav97] J. Davis and A. Bobick, “The recognition of human movement using temporal templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, pp.257 – 267, 2001.

    [Fuj98] H. Fujiyoshi and A. Lipton, “Real-time human motion analysis by image skeletonization,” Proceedings of 4th IEEE Workshop on Applications of Computer Vision, Japan, pp. 15 – 21, 1998.

    [Jua09] C. F. Juang, C. M. Chang, J. R. Wu, and D. Lee,, “Computer Vision-Based Human Body Segmentation and Posture Estimation,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 39, pp.119 – 133, 2009.

    [Jua07] C. F. Juang and C. M. Chang, “Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 37, pp.984 – 994, 2007.

    [Kir05] T. Kirishima, K. Sato, and K. Chihara, “Real-time gesture recognition by learning and selective control of visual interest points,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, pp.351 – 364, 2005.

    [Kje96] R. Kjeldsen, and J. Kender, “Finding skin in color images,” Proceedings of 2nd International Conference on Automatic Face and Gesture Recognition, Zurich, Switzerland, pp.312 – 317, 1996.

    [Kos08] G. Kosta and M. Benoit, “Group Behavior Recognition for Gesture Analysis,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, pp.211 – 222, 2008.

    [Li07] X. Li, S. Yan, D. Tao, and D. Xu, “Gait Components and Their Application to Gender Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 38, pp.145 – 155, 2007.

    [Wan03] H. Wang, and N. Ahuja, “Facial Expression Decomposition,” Proceedings of 9th IEEE International Conference on Computer Vision, Nice, France, pp.958 – 965, 2003.

    [Wan07] J. M. Wang, S. W. Chen, S. Cheng, and C. S. Fuh, “People Counting Using Fisheye Camera,” Proceedings of 20th IPPR Conference on CVGIP, Mauli, Taiwan, 2007.

    [Won06] J. Wong, and S. Cho, “Recognizing Human Emotion from Partial Facial Features,” Proceedings of International Joint Conference on Neural Networks, Vancouver, Canada, pp.166 – 173, 2006.

    [Wu05] K. Wu, E. Otoo, and A. Shoshani, “Optimizing Connected Component Labeling Algorithms,” Proceedings of Conference on Image Processing, pp.1965 – 1976, 2005.

    [Yan06] B. Yang and P. Jia, “A Facial Expression Model for Human-Like Agent,” Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, pp.1 – 6, 2006.

    [Yea06] M. Yeasin, B. Bullot, and R. Sharma, “Recognition of Facial Expressions and Measurement of Levels of Interest From Video,” IEEE Transactions on Multimedia, Vol. 8, pp.500 – 508, 2006.

    [Zuo05] F. Zuo,and d. With, “Real-time embedded face recognition for smart home,” IEEE Transactions on Consumer Electronics, Vol. 51, pp.183 – 190, 2005.

    [1] 行政院衛生署,http://www.doh.gov.tw/ufile/doc/95%e8%a1%a822.xls,歷年新生兒、嬰兒及孕產婦死亡概況,2006年。

    [2] 行政院衛生署,http://www.doh.gov.tw/statistic/data/死因摘要/91年/表4.xls,臺灣地區嬰兒主要死亡原因,2001年。

    [3] 林翠湄、黃俊豪,發展心理學Developmental Psychology,2001年。

    [4] 郭劍,http://news.sina.com/us/chinapress/104-103-102-102/2008-04-25/03372845187.html,新浪新聞,父母與嬰兒同床就寢有危險,2008年。

    [5] 方旭彬,http://www.tahsda.org.tw/article/news.php?title1=&id=37&name=pediatrics,臺安醫院,如何防止寶寶意外事故的發生,2004年。

    [6] 呂適存,http://www.pediatrics.com.tw/Observation%20baby.htm,育兒電子書網頁,如何觀察寶寶,2007年。

    [7] 消防處救護訓練學校,http://www.hkfsd.gov.hk/home/chi/source/safety/Children_home_accident.html,家居意外知多少,小孩及嬰兒篇,2001年。

    [8] 蘇愛能、陳志誠,http://www.mombaby.com.tw/baby/detail.asp?sn=0608080009,媽媽寶寶雜誌,寶寶睡姿比一比,2008年。

    [9] 白璐、潘俊伸,http://www.mombaby.com.tw/baby/detail.asp?sn=0806120001,媽媽寶寶雜誌,從寶寶居家安全做起,2008年。

    QR CODE